Update BYOL docs
This commit is contained in:
parent
29db7c7a02
commit
a947f064cc
|
@ -30,8 +30,8 @@ Run the trainer by:
|
|||
|
||||
`python train.py -opt train_div2k_byol.yml`
|
||||
|
||||
BYOL is data hungry, as most unsupervised training methods are. You'll definitely want to provide
|
||||
your own dataset - DIV2K is here as an example only.
|
||||
BYOL is data hungry, as most unsupervised training methods are. If you're providing your own dataset, make sure it is
|
||||
the hundreds of K-images or more!
|
||||
|
||||
## Using your own model
|
||||
|
||||
|
|
|
@ -1,55 +1,59 @@
|
|||
#### general settings
|
||||
name: train_div2k_byol
|
||||
name: train_imageset_byol
|
||||
use_tb_logger: true
|
||||
model: extensibletrainer
|
||||
scale: 1
|
||||
gpu_ids: [0]
|
||||
fp16: false
|
||||
start_step: 0
|
||||
checkpointing_enabled: true # <-- Highly recommended for single-GPU training. Will not work with DDP.
|
||||
checkpointing_enabled: true # <-- Highly recommended for single-GPU training. May not work in distributed settings.
|
||||
wandb: false
|
||||
|
||||
datasets:
|
||||
train:
|
||||
n_workers: 4
|
||||
batch_size: 32
|
||||
batch_size: 256 # <-- BYOL trains on very large batch sizes. 256 was the smallest batch size possible before a
|
||||
# severe drop off in performance. Other parameters here are set to enable this to train on a
|
||||
# single 10GB GPU.
|
||||
mode: byol_dataset
|
||||
crop_size: 256
|
||||
crop_size: 224
|
||||
normalize: true
|
||||
key1: hq
|
||||
key2: hq
|
||||
dataset:
|
||||
mode: imagefolder
|
||||
paths: /content/div2k # <-- Put your path here. Note: full images.
|
||||
target_size: 256
|
||||
paths: /content/imagenet # <-- Put your path here. Directory should be filled with square images.
|
||||
target_size: 224
|
||||
scale: 1
|
||||
skip_lq: true
|
||||
|
||||
networks:
|
||||
generator:
|
||||
type: generator
|
||||
which_model_G: byol
|
||||
image_size: 256
|
||||
subnet: # <-- Specify your own network to pretrain here.
|
||||
which_model_G: spinenet
|
||||
arch: 49
|
||||
use_input_norm: true
|
||||
|
||||
hidden_layer: endpoint_convs.4.conv # <-- Specify a hidden layer from your network here.
|
||||
subnet:
|
||||
which_model_G: resnet52 # <-- Specify your own network to pretrain here.
|
||||
pretrained: false
|
||||
hidden_layer: avgpool # <-- Specify a hidden layer from your network here.
|
||||
|
||||
#### path
|
||||
path:
|
||||
#pretrain_model_generator: <insert pretrained model path if desired>
|
||||
strict_load: true
|
||||
#resume_state: ../experiments/train_div2k_byol/training_state/0.state # <-- Set this to resume from a previous training state.
|
||||
#resume_state: ../experiments/train_imageset_byol/training_state/0.state # <-- Set this to resume from a previous training state.
|
||||
|
||||
steps:
|
||||
generator:
|
||||
training: generator
|
||||
|
||||
optimizer: lars
|
||||
optimizer_params:
|
||||
# Optimizer params
|
||||
lr: !!float 3e-4
|
||||
weight_decay: 0
|
||||
beta1: 0.9
|
||||
beta2: 0.99
|
||||
# All parameters from appendix J of BYOL.
|
||||
lr: .2 # From BYOL paper: LR=.2*<batch_size>/256
|
||||
weight_decay: !!float 1.5e-6
|
||||
lars_coefficient: .001
|
||||
momentum: .9
|
||||
|
||||
injectors:
|
||||
gen_inj:
|
||||
|
@ -67,13 +71,18 @@ steps:
|
|||
train:
|
||||
niter: 500000
|
||||
warmup_iter: -1
|
||||
mega_batch_factor: 1 # <-- Gradient accumulation factor. If you are running OOM, increase this to [2,4,8].
|
||||
mega_batch_factor: 4 # <-- Gradient accumulation factor. If you are running OOM, increase this to [8].
|
||||
# Likewise, if you are running on a 24GB GPU, decrease this to [1] to improve batch stats.
|
||||
val_freq: 2000
|
||||
|
||||
# Default LR scheduler options
|
||||
default_lr_scheme: MultiStepLR
|
||||
gen_lr_steps: [50000, 100000, 150000, 200000]
|
||||
lr_gamma: 0.5
|
||||
default_lr_scheme: CosineAnnealingLR_Restart
|
||||
T_period: [120000, 120000, 120000]
|
||||
warmup: 10000
|
||||
eta_min: .01 # Unspecified by the paper..
|
||||
restarts: [140000, 280000] # Paper specifies a different, longer schedule that is not practical for anyone not using
|
||||
# 4x V100s+. Modify these parameters if you are.
|
||||
restart_weights: [.5, .25]
|
||||
|
||||
eval:
|
||||
output_state: loss
|
||||
|
@ -81,5 +90,5 @@ eval:
|
|||
logger:
|
||||
print_freq: 30
|
||||
save_checkpoint_freq: 1000
|
||||
visuals: [hq, lq, aug1, aug2]
|
||||
visuals: [hq, aug1, aug2]
|
||||
visual_debug_rate: 100
|
Loading…
Reference in New Issue
Block a user