Try out using the GPT tokenizer rather than nv_tacotron

This results in a significant compression of the text domain, I'm curious what the
effect on speech quality will be.
This commit is contained in:
James Betker 2021-12-22 14:03:18 -07:00
parent ced81a760b
commit a9629f7022
3 changed files with 18 additions and 16 deletions

View File

@ -69,6 +69,15 @@ def create_dataset(dataset_opt, return_collate=False):
dataset_opt = munchify(default_params)
if opt_get(dataset_opt, ['needs_collate'], True):
collate = C()
elif mode == 'paired_voice_audio':
from data.audio.paired_voice_audio_dataset import TextWavLoader as D
from data.audio.paired_voice_audio_dataset import TextMelCollate as C
from models.tacotron2.hparams import create_hparams
default_params = create_hparams()
default_params.update(dataset_opt)
dataset_opt = munchify(default_params)
if opt_get(dataset_opt, ['needs_collate'], True):
collate = C()
elif mode == 'gpt_tts':
from data.audio.gpt_tts_dataset import GptTtsDataset as D
from data.audio.gpt_tts_dataset import GptTtsCollater as C

View File

@ -7,11 +7,11 @@ import torch.nn.functional as F
import torch.utils.data
import torchaudio
from tqdm import tqdm
from transformers import GPT2TokenizerFast
from data.audio.unsupervised_audio_dataset import load_audio
from data.util import find_files_of_type, is_audio_file
from models.tacotron2.taco_utils import load_filepaths_and_text
from models.tacotron2.text import text_to_sequence
from utils.util import opt_get
@ -84,6 +84,7 @@ class TextWavLoader(torch.utils.data.Dataset):
self.needs_collate = opt_get(hparams, ['needs_collate'], True)
if not self.needs_collate:
assert self.max_wav_len is not None and self.max_text_len is not None
self.tokenizer = GPT2TokenizerFast.from_pretrained('gpt2')
def get_wav_text_pair(self, audiopath_and_text):
# separate filename and text
@ -93,8 +94,7 @@ class TextWavLoader(torch.utils.data.Dataset):
return (text_seq, wav, text, audiopath_and_text[0])
def get_text(self, text):
text_norm = torch.IntTensor(text_to_sequence(text, self.text_cleaners))
return text_norm
return torch.IntTensor(self.tokenizer(text)['input_ids'])
def load_conditioning_candidates(self, path):
candidates = find_files_of_type('img', os.path.dirname(path), qualifier=is_audio_file)[0]
@ -213,7 +213,7 @@ class TextMelCollate():
if __name__ == '__main__':
batch_sz = 8
params = {
'mode': 'nv_tacotron',
'mode': 'paired_voice_audio',
'path': ['Z:\\bigasr_dataset\\libritts\\test-clean_list.txt'],
'fetcher_mode': ['libritts'],
'phase': 'train',
@ -234,11 +234,5 @@ if __name__ == '__main__':
i = 0
m = None
for i, b in tqdm(enumerate(dl)):
if i > 5:
break
w = b['wav']
for ib in range(batch_sz):
print(f'{i} {ib} {b["real_text"][ib]}')
torchaudio.save(f'{i}_clip_{ib}.wav', b['wav'][ib], ds.sample_rate)
for c in range(3):
torchaudio.save(f'{i}_clip_{ib}_cond{c}.wav', b['conditioning'][ib, c], ds.sample_rate)
print(f"text_seq: {b['text_lengths'].max()}, speech_seq: {b['wav_lengths'].max()//1024}")

View File

@ -20,7 +20,7 @@ class ConditioningEncoder(nn.Module):
def __init__(self,
spec_dim,
embedding_dim,
attn_blocks=4,
attn_blocks=6,
num_attn_heads=4,
do_checkpointing=False):
super().__init__()
@ -39,14 +39,13 @@ class ConditioningEncoder(nn.Module):
class GptTtsHf(nn.Module):
NUMBER_TEXT_TOKENS = len(symbols)+1
START_TEXT_TOKEN = len(symbols)
NUMBER_TEXT_TOKENS = 50257 # The number of BPE tokens produced by the HF GPT2Tokenizer
STOP_TEXT_TOKEN = 0
NUMBER_MEL_CODES = 8194
START_MEL_TOKEN = 8192
STOP_MEL_TOKEN = 8193
def __init__(self, layers=8, model_dim=512, heads=8, max_symbols_per_phrase=200, max_mel_tokens=250, max_conditioning_inputs=3,
def __init__(self, layers=8, model_dim=512, heads=8, max_symbols_per_phrase=100, max_mel_tokens=250, max_conditioning_inputs=3,
checkpointing=True, mel_length_compression=1024, max_conditioning_length=60):
super().__init__()
self.max_mel_tokens = max_mel_tokens
@ -54,7 +53,7 @@ class GptTtsHf(nn.Module):
self.model_dim = model_dim
self.max_conditioning_inputs = max_conditioning_inputs
self.mel_length_compression = mel_length_compression
self.conditioning_encoder = ConditioningEncoder(80, model_dim)
self.conditioning_encoder = ConditioningEncoder(80, model_dim, num_attn_heads=heads)
self.text_embedding = nn.Embedding(self.NUMBER_TEXT_TOKENS, model_dim)
seq_length = 2+self.max_symbols_per_phrase+self.max_conditioning_inputs+self.max_mel_tokens
self.gpt_config = GPT2Config(vocab_size=self.NUMBER_MEL_CODES,