Mods to byol_resnet_playground for large batches

This commit is contained in:
James Betker 2021-01-01 11:59:54 -07:00
parent e992e18767
commit aae65e6ed8
2 changed files with 31 additions and 54 deletions

View File

@ -26,7 +26,7 @@ from utils.options import dict_to_nonedict
def structural_euc_dist(x, y): def structural_euc_dist(x, y):
diff = torch.square(x - y) diff = torch.square(x - y)
sum = torch.sum(diff, dim=-1) sum = torch.sum(diff, dim=-1)
return torch.mean(torch.sqrt(sum)) return torch.sqrt(sum)
def cosine_similarity(x, y): def cosine_similarity(x, y):
@ -87,43 +87,15 @@ def register_hook(net, layer_name):
layer.register_forward_hook(_hook) layer.register_forward_hook(_hook)
def create_latent_database(model, model_index=0):
batch_size = 32
num_workers = 1
output_path = '../../results/byol_resnet_latents/'
os.makedirs(output_path, exist_ok=True)
dataloader = get_image_folder_dataloader(batch_size, num_workers)
id = 0
dict_count = 1
latent_dict = {}
all_paths = []
for batch in tqdm(dataloader):
hq = batch['hq'].to('cuda')
latent = model(hq)[model_index] # BYOL trainer only trains the '4' output, which is indexed at [1]. Confusing.
for b in range(latent.shape[0]):
im_path = batch['HQ_path'][b]
all_paths.append(im_path)
latent_dict[id] = latent[b].detach().cpu()
if (id+1) % 1000 == 0:
print("Saving checkpoint..")
torch.save(latent_dict, os.path.join(output_path, "latent_dict_%i.pth" % (dict_count,)))
latent_dict = {}
torch.save(all_paths, os.path.join(output_path, "all_paths.pth"))
dict_count += 1
id += 1
def get_latent_for_img(model, img): def get_latent_for_img(model, img):
img_t = ToTensor()(Image.open(img)).to('cuda').unsqueeze(0) img_t = ToTensor()(Image.open(img)).to('cuda').unsqueeze(0)
_, _, h, w = img_t.shape _, _, h, w = img_t.shape
# Center crop img_t and resize to 224. # Center crop img_t and resize to 224.
d = min(h, w) d = min(h, w)
dh, dw = (h-d)//2, (w-d)//2 dh, dw = (h-d)//2, (w-d)//2
if dh == 0: if dw != 0:
img_t = img_t[:, :, :, dw:-dw] img_t = img_t[:, :, :, dw:-dw]
else: elif dh != 0:
img_t = img_t[:, :, dh:-dh, :] img_t = img_t[:, :, dh:-dh, :]
img_t = torch.nn.functional.interpolate(img_t, size=(224, 224), mode="area") img_t = torch.nn.functional.interpolate(img_t, size=(224, 224), mode="area")
model(img_t) model(img_t)
@ -134,36 +106,42 @@ def get_latent_for_img(model, img):
def find_similar_latents(model, compare_fn=structural_euc_dist): def find_similar_latents(model, compare_fn=structural_euc_dist):
global layer_hooked_value global layer_hooked_value
img = 'F:\\4k6k\\datasets\\ns_images\\adrianna\\analyze\\analyze_xx\\yui_xx.jpg' img = 'F:\\4k6k\\datasets\\ns_images\\adrianna\\analyze\\analyze_xx\\poon.jpg'
#img = 'F:\\4k6k\\datasets\\ns_images\\adrianna\\analyze\\analyze_xx\\nicky_xx.jpg' #img = 'F:\\4k6k\\datasets\\ns_images\\adrianna\\analyze\\analyze_xx\\nicky_xx.jpg'
output_path = '../../results/byol_resnet_similars' output_path = '../../results/byol_resnet_similars'
os.makedirs(output_path, exist_ok=True) os.makedirs(output_path, exist_ok=True)
imglatent = get_latent_for_img(model, img) imglatent = get_latent_for_img(model, img).squeeze().unsqueeze(0)
_, c, h, w = imglatent.shape _, c = imglatent.shape
batch_size = 32 batch_size = 128
num_workers = 1 num_workers = 8
dataloader = get_image_folder_dataloader(batch_size, num_workers) dataloader = get_image_folder_dataloader(batch_size, num_workers)
id = 0 id = 0
output_batch = 1
results = [] results = []
result_paths = []
for batch in tqdm(dataloader): for batch in tqdm(dataloader):
hq = batch['hq'].to('cuda') hq = batch['hq'].to('cuda')
model(hq) model(hq)
latent = layer_hooked_value latent = layer_hooked_value.clone().squeeze()
for b in range(latent.shape[0]): compared = compare_fn(imglatent.repeat(latent.shape[0], 1), latent)
im_path = batch['HQ_path'][b] results.append(compared.cpu())
results.append((im_path, compare_fn(imglatent, latent[b].unsqueeze(0)).item())) result_paths.extend(batch['HQ_path'])
id += 1 id += batch_size
if id > 2000: if id > 10000:
break k = 500
results.sort(key=lambda x: x[1]) results = torch.cat(results, dim=0)
for i in range(50): vals, inds = torch.topk(results, k, largest=False)
mag = results[i][1] for i in inds:
shutil.copy(results[i][0], os.path.join(output_path, f'{i}_{mag}.jpg')) mag = int(results[i].item() * 1000)
shutil.copy(result_paths[i], os.path.join(output_path, f'{mag:05}_{output_batch}_{i}.jpg'))
results = []
result_paths = []
id = 0
if __name__ == '__main__': if __name__ == '__main__':
pretrained_path = '../../experiments/resnet_byol_diffframe_69k.pth' pretrained_path = '../../experiments/resnet_byol_diffframe_85k.pth'
model = resnet50(pretrained=False).to('cuda') model = resnet50(pretrained=False).to('cuda')
sd = torch.load(pretrained_path) sd = torch.load(pretrained_path)
resnet_sd = {} resnet_sd = {}

View File

@ -19,9 +19,9 @@ def main():
# compression time. If read raw images during training, use 0 for faster IO speed. # compression time. If read raw images during training, use 0 for faster IO speed.
opt['dest'] = 'file' opt['dest'] = 'file'
opt['input_folder'] = ['F:\\4k6k\\datasets\\ns_images\\imagesets\\imgset4'] opt['input_folder'] = ['F:\\4k6k\\datasets\\ns_images\\vixen\\vix_cropped']
opt['save_folder'] = 'F:\\4k6k\\datasets\\ns_images\\256_unsupervised_new' opt['save_folder'] = 'F:\\4k6k\\datasets\\ns_images\\video_512_cropped'
opt['imgsize'] = 256 opt['imgsize'] = 512
#opt['bottom_crop'] = 120 #opt['bottom_crop'] = 120
save_folder = opt['save_folder'] save_folder = opt['save_folder']
@ -45,7 +45,7 @@ class TiledDataset(data.Dataset):
def get(self, index): def get(self, index):
path = self.images[index] path = self.images[index]
basename = osp.basename(path) basename = osp.basename(path)
img = data_util.read_img(None, path) img = cv2.imread(path, cv2.IMREAD_UNCHANGED)
# Greyscale not supported. # Greyscale not supported.
if img is None: if img is None:
@ -62,7 +62,7 @@ class TiledDataset(data.Dataset):
h, w, c = img.shape h, w, c = img.shape
# Uncomment to filter any image that doesnt meet a threshold size. # Uncomment to filter any image that doesnt meet a threshold size.
if min(h,w) < 256: if min(h,w) < 512:
print("Skipping due to threshold") print("Skipping due to threshold")
return None return None
@ -71,7 +71,6 @@ class TiledDataset(data.Dataset):
# Crop the image so that only the center is left, since this is often the most salient part of the image. # Crop the image so that only the center is left, since this is often the most salient part of the image.
img = img[(h - dim) // 2:dim + (h - dim) // 2, (w - dim) // 2:dim + (w - dim) // 2, :] img = img[(h - dim) // 2:dim + (h - dim) // 2, (w - dim) // 2:dim + (w - dim) // 2, :]
img = cv2.resize(img, (self.opt['imgsize'], self.opt['imgsize']), interpolation=cv2.INTER_AREA) img = cv2.resize(img, (self.opt['imgsize'], self.opt['imgsize']), interpolation=cv2.INTER_AREA)
cv2.imwrite(osp.join(self.opt['save_folder'], basename + ".jpg"), img, [cv2.IMWRITE_JPEG_QUALITY, self.opt['compression_level']]) cv2.imwrite(osp.join(self.opt['save_folder'], basename + ".jpg"), img, [cv2.IMWRITE_JPEG_QUALITY, self.opt['compression_level']])
return None return None