diff --git a/codes/models/audio/music/unet_diffusion_waveform_gen2.py b/codes/models/audio/music/unet_diffusion_waveform_gen2.py index 6614d728..101a7353 100644 --- a/codes/models/audio/music/unet_diffusion_waveform_gen2.py +++ b/codes/models/audio/music/unet_diffusion_waveform_gen2.py @@ -182,7 +182,7 @@ class AudioVAE(nn.Module): return h -class DiffusionTts(nn.Module): +class Diffusion(nn.Module): """ The full UNet model with attention and timestep embedding. @@ -441,20 +441,20 @@ class DiffusionTts(nn.Module): @register_model def register_unet_diffusion_waveform_gen2(opt_net, opt): - return DiffusionTts(**opt_net['kwargs']) + return Diffusion(**opt_net['kwargs']) if __name__ == '__main__': clip = torch.randn(2, 1, 32868) aligned_sequence = torch.randn(2,1,32868) ts = torch.LongTensor([600, 600]) - model = DiffusionTts(128, - channel_mult=[1,1.5,2, 3, 4, 6, 8], - num_res_blocks=[2, 2, 2, 2, 2, 2, 1], - kernel_size=3, - scale_factor=2, - time_embed_dim_multiplier=4, - efficient_convs=False) + model = Diffusion(128, + channel_mult=[1,1.5,2, 3, 4, 6, 8], + num_res_blocks=[2, 2, 2, 2, 2, 2, 1], + kernel_size=3, + scale_factor=2, + time_embed_dim_multiplier=4, + efficient_convs=False) # Test with sequence aligned conditioning o = model(clip, ts, aligned_sequence) diff --git a/codes/models/audio/music/unet_diffusion_waveform_gen3.py b/codes/models/audio/music/unet_diffusion_waveform_gen3.py new file mode 100644 index 00000000..c1403024 --- /dev/null +++ b/codes/models/audio/music/unet_diffusion_waveform_gen3.py @@ -0,0 +1,480 @@ +import random + +import torch +import torch.nn as nn +import torch.nn.functional as F +from torch import autocast +from x_transformers import Encoder + +from models.diffusion.nn import timestep_embedding, normalization, zero_module, conv_nd, linear +from models.diffusion.unet_diffusion import AttentionBlock, TimestepEmbedSequential, \ + Downsample, Upsample, TimestepBlock +from models.audio.tts.mini_encoder import AudioMiniEncoder +from models.audio.tts.unet_diffusion_tts7 import CheckpointedXTransformerEncoder +from scripts.audio.gen.use_diffuse_tts import ceil_multiple +from trainer.networks import register_model +from utils.util import checkpoint + +def is_sequence(t): + return t.dtype == torch.long + + +class ResBlock(TimestepBlock): + def __init__( + self, + channels, + emb_channels, + dropout, + out_channels=None, + dims=2, + kernel_size=3, + efficient_config=True, + use_scale_shift_norm=False, + ): + super().__init__() + self.channels = channels + self.emb_channels = emb_channels + self.dropout = dropout + self.out_channels = out_channels or channels + self.use_scale_shift_norm = use_scale_shift_norm + padding = {1: 0, 3: 1, 5: 2}[kernel_size] + eff_kernel = 1 if efficient_config else 3 + eff_padding = 0 if efficient_config else 1 + + self.in_layers = nn.Sequential( + normalization(channels), + nn.SiLU(), + conv_nd(dims, channels, self.out_channels, eff_kernel, padding=eff_padding), + ) + + self.emb_layers = nn.Sequential( + nn.SiLU(), + linear( + emb_channels, + 2 * self.out_channels if use_scale_shift_norm else self.out_channels, + ), + ) + self.out_layers = nn.Sequential( + normalization(self.out_channels), + nn.SiLU(), + nn.Dropout(p=dropout), + zero_module( + conv_nd(dims, self.out_channels, self.out_channels, kernel_size, padding=padding) + ), + ) + + if self.out_channels == channels: + self.skip_connection = nn.Identity() + else: + self.skip_connection = conv_nd(dims, channels, self.out_channels, eff_kernel, padding=eff_padding) + + def forward(self, x, emb): + """ + Apply the block to a Tensor, conditioned on a timestep embedding. + + :param x: an [N x C x ...] Tensor of features. + :param emb: an [N x emb_channels] Tensor of timestep embeddings. + :return: an [N x C x ...] Tensor of outputs. + """ + return checkpoint( + self._forward, x, emb + ) + + def _forward(self, x, emb): + h = self.in_layers(x) + emb_out = self.emb_layers(emb).type(h.dtype) + while len(emb_out.shape) < len(h.shape): + emb_out = emb_out[..., None] + if self.use_scale_shift_norm: + out_norm, out_rest = self.out_layers[0], self.out_layers[1:] + scale, shift = torch.chunk(emb_out, 2, dim=1) + h = out_norm(h) * (1 + scale) + shift + h = out_rest(h) + else: + h = h + emb_out + h = self.out_layers(h) + return self.skip_connection(x) + h + + +class ResBlockSimple(nn.Module): + def __init__( + self, + channels, + dropout, + out_channels=None, + dims=1, + kernel_size=3, + efficient_config=True, + ): + super().__init__() + self.channels = channels + self.dropout = dropout + self.out_channels = out_channels or channels + padding = {1: 0, 3: 1, 5: 2}[kernel_size] + eff_kernel = 1 if efficient_config else 3 + eff_padding = 0 if efficient_config else 1 + + self.in_layers = nn.Sequential( + normalization(channels), + nn.SiLU(), + conv_nd(dims, channels, self.out_channels, eff_kernel, padding=eff_padding), + ) + self.out_layers = nn.Sequential( + normalization(self.out_channels), + nn.SiLU(), + nn.Dropout(p=dropout), + zero_module( + conv_nd(dims, self.out_channels, self.out_channels, kernel_size, padding=padding) + ), + ) + + if self.out_channels == channels: + self.skip_connection = nn.Identity() + else: + self.skip_connection = conv_nd(dims, channels, self.out_channels, eff_kernel, padding=eff_padding) + + def forward(self, x): + return checkpoint( + self._forward, x + ) + + def _forward(self, x): + h = self.in_layers(x) + h = self.out_layers(h) + return self.skip_connection(x) + h + + +class DiffusionTts(nn.Module): + """ + The full UNet model with attention and timestep embedding. + + Customized to be conditioned on an aligned prior derived from a autoregressive + GPT-style model. + + :param in_channels: channels in the input Tensor. + :param in_latent_channels: channels from the input latent. + :param model_channels: base channel count for the model. + :param out_channels: channels in the output Tensor. + :param num_res_blocks: number of residual blocks per downsample. + :param attention_resolutions: a collection of downsample rates at which + attention will take place. May be a set, list, or tuple. + For example, if this contains 4, then at 4x downsampling, attention + will be used. + :param dropout: the dropout probability. + :param channel_mult: channel multiplier for each level of the UNet. + :param conv_resample: if True, use learned convolutions for upsampling and + downsampling. + :param dims: determines if the signal is 1D, 2D, or 3D. + :param num_heads: the number of attention heads in each attention layer. + :param num_heads_channels: if specified, ignore num_heads and instead use + a fixed channel width per attention head. + :param num_heads_upsample: works with num_heads to set a different number + of heads for upsampling. Deprecated. + :param use_scale_shift_norm: use a FiLM-like conditioning mechanism. + :param resblock_updown: use residual blocks for up/downsampling. + :param use_new_attention_order: use a different attention pattern for potentially + increased efficiency. + """ + + def __init__( + self, + model_channels, + in_channels=1, + in_latent_channels=1024, + in_mel_channels=120, + conditioning_dim_factor=8, + conditioning_expansion=4, + out_channels=2, # mean and variance + dropout=0, + # res 1, 2, 4, 8,16,32,64,128,256,512, 1K, 2K + channel_mult= (1,1.5,2, 3, 4, 6, 8, 12, 16, 24, 32, 48), + num_res_blocks=(1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2), + # spec_cond: 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0) + # attn: 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1 + token_conditioning_resolutions=(1,16,), + conv_resample=True, + dims=1, + use_fp16=False, + num_heads=1, + num_head_channels=-1, + num_heads_upsample=-1, + kernel_size=3, + scale_factor=2, + time_embed_dim_multiplier=4, + efficient_convs=True, # Uses kernels with width of 1 in several places rather than 3. + use_scale_shift_norm=True, + # Parameters for regularization. + unconditioned_percentage=.1, # This implements a mechanism similar to what is used in classifier-free training. + ): + super().__init__() + + if num_heads_upsample == -1: + num_heads_upsample = num_heads + + self.in_channels = in_channels + self.model_channels = model_channels + self.out_channels = out_channels + self.dropout = dropout + self.channel_mult = channel_mult + self.conv_resample = conv_resample + self.num_heads = num_heads + self.num_head_channels = num_head_channels + self.num_heads_upsample = num_heads_upsample + self.dims = dims + self.unconditioned_percentage = unconditioned_percentage + self.enable_fp16 = use_fp16 + self.alignment_size = 2 ** (len(channel_mult)+1) + self.in_mel_channels = in_mel_channels + padding = 1 if kernel_size == 3 else 2 + down_kernel = 1 if efficient_convs else 3 + + time_embed_dim = model_channels * time_embed_dim_multiplier + self.time_embed = nn.Sequential( + linear(model_channels, time_embed_dim), + nn.SiLU(), + linear(time_embed_dim, time_embed_dim), + ) + + conditioning_dim = model_channels * conditioning_dim_factor + # Either code_converter or latent_converter is used, depending on what type of conditioning data is fed. + # This model is meant to be able to be trained on both for efficiency purposes - it is far less computationally + # complex to generate tokens, while generating latents will normally mean propagating through a deep autoregressive + # transformer network. + self.mel_converter = nn.Sequential( + nn.Conv1d(in_mel_channels, conditioning_dim, 3, padding=1), + ResBlockSimple(conditioning_dim, dropout, efficient_config=False), + ResBlockSimple(conditioning_dim, dropout, efficient_config=False), + ResBlockSimple(conditioning_dim, dropout, efficient_config=False), + ResBlockSimple(conditioning_dim, dropout, efficient_config=False), + ResBlockSimple(conditioning_dim, dropout, efficient_config=False) + ) + self.latent_converter = nn.Conv1d(in_latent_channels, conditioning_dim, 1) + self.aligned_latent_padding_embedding = nn.Parameter(torch.randn(1,in_latent_channels,1)) + self.unconditioned_embedding = nn.Parameter(torch.randn(1,conditioning_dim,1)) + self.conditioning_expansion = conditioning_expansion + + self.input_blocks = nn.ModuleList( + [ + TimestepEmbedSequential( + conv_nd(dims, in_channels, model_channels, kernel_size, padding=padding) + ) + ] + ) + token_conditioning_blocks = [] + self._feature_size = model_channels + input_block_chans = [model_channels] + ch = model_channels + ds = 1 + + for level, (mult, num_blocks) in enumerate(zip(channel_mult, num_res_blocks)): + if ds in token_conditioning_resolutions: + token_conditioning_block = nn.Conv1d(conditioning_dim, ch, 1) + token_conditioning_block.weight.data *= .02 + self.input_blocks.append(token_conditioning_block) + token_conditioning_blocks.append(token_conditioning_block) + + for _ in range(num_blocks): + layers = [ + ResBlock( + ch, + time_embed_dim, + dropout, + out_channels=int(mult * model_channels), + dims=dims, + kernel_size=kernel_size, + efficient_config=efficient_convs, + use_scale_shift_norm=use_scale_shift_norm, + ) + ] + ch = int(mult * model_channels) + self.input_blocks.append(TimestepEmbedSequential(*layers)) + self._feature_size += ch + input_block_chans.append(ch) + if level != len(channel_mult) - 1: + out_ch = ch + self.input_blocks.append( + TimestepEmbedSequential( + Downsample( + ch, conv_resample, dims=dims, out_channels=out_ch, factor=scale_factor, ksize=down_kernel, pad=0 if down_kernel == 1 else 1 + ) + ) + ) + ch = out_ch + input_block_chans.append(ch) + ds *= 2 + self._feature_size += ch + + self.middle_block = TimestepEmbedSequential( + ResBlock( + ch, + time_embed_dim, + dropout, + dims=dims, + kernel_size=kernel_size, + efficient_config=efficient_convs, + use_scale_shift_norm=use_scale_shift_norm, + ), + ResBlock( + ch, + time_embed_dim, + dropout, + dims=dims, + kernel_size=kernel_size, + efficient_config=efficient_convs, + use_scale_shift_norm=use_scale_shift_norm, + ), + ) + self._feature_size += ch + + self.output_blocks = nn.ModuleList([]) + for level, (mult, num_blocks) in list(enumerate(zip(channel_mult, num_res_blocks)))[::-1]: + for i in range(num_blocks + 1): + ich = input_block_chans.pop() + layers = [ + ResBlock( + ch + ich, + time_embed_dim, + dropout, + out_channels=int(model_channels * mult), + dims=dims, + kernel_size=kernel_size, + efficient_config=efficient_convs, + use_scale_shift_norm=use_scale_shift_norm, + ) + ] + ch = int(model_channels * mult) + if level and i == num_blocks: + out_ch = ch + layers.append( + Upsample(ch, conv_resample, dims=dims, out_channels=out_ch, factor=scale_factor) + ) + ds //= 2 + self.output_blocks.append(TimestepEmbedSequential(*layers)) + self._feature_size += ch + + self.out = nn.Sequential( + normalization(ch), + nn.SiLU(), + zero_module(conv_nd(dims, model_channels, out_channels, kernel_size, padding=padding)), + ) + + def get_grad_norm_parameter_groups(self): + groups = { + 'input_blocks': list(self.input_blocks.parameters()), + 'output_blocks': list(self.output_blocks.parameters()), + 'middle_transformer': list(self.middle_block.parameters()), + } + return groups + + def is_latent(self, t): + return t.shape[1] != self.in_mel_channels + + def fix_alignment(self, x, aligned_conditioning): + """ + The UNet requires that the input is a certain multiple of 2, defined by the UNet depth. Enforce this by + padding both and before forward propagation and removing the padding before returning. + """ + cm = ceil_multiple(x.shape[-1], self.alignment_size) + if cm != 0: + pc = (cm-x.shape[-1])/x.shape[-1] + x = F.pad(x, (0,cm-x.shape[-1])) + # Also fix aligned_latent, which is aligned to x. + if self.is_latent(aligned_conditioning): + aligned_conditioning = torch.cat([aligned_conditioning, + self.aligned_latent_padding_embedding.repeat(x.shape[0], 1, int(pc * aligned_conditioning.shape[-1]))], dim=-1) + else: + aligned_conditioning = F.pad(aligned_conditioning, (0,int(pc*aligned_conditioning.shape[-1]))) + return x, aligned_conditioning + + def forward(self, x, timesteps, aligned_conditioning, conditioning_free=False): + """ + Apply the model to an input batch. + + :param x: an [N x C x ...] Tensor of inputs. + :param timesteps: a 1-D batch of timesteps. + :param aligned_conditioning: an aligned latent or sequence of tokens providing useful data about the sample to be produced. + :param conditioning_free: When set, all conditioning inputs (including tokens and conditioning_input) will not be considered. + :return: an [N x C x ...] Tensor of outputs. + """ + + # Shuffle aligned_latent to BxCxS format + if self.is_latent(aligned_conditioning): + aligned_conditioning = aligned_conditioning.permute(0, 2, 1) + + # Fix input size to the proper multiple of 2 so we don't get alignment errors going down and back up the U-net. + orig_x_shape = x.shape[-1] + x, aligned_conditioning = self.fix_alignment(x, aligned_conditioning) + + with autocast(x.device.type, enabled=self.enable_fp16): + + hs = [] + time_emb = self.time_embed(timestep_embedding(timesteps, self.model_channels)) + + # Note: this block does not need to repeated on inference, since it is not timestep-dependent. + if conditioning_free: + code_emb = self.unconditioned_embedding.repeat(x.shape[0], 1, 1) + else: + if self.is_latent(aligned_conditioning): + code_emb = self.latent_converter(aligned_conditioning) + else: + code_emb = self.mel_converter(aligned_conditioning) + + # Everything after this comment is timestep dependent. + code_emb = torch.repeat_interleave(code_emb, self.conditioning_expansion, dim=-1) + + first = True + time_emb = time_emb.float() + h = x + for k, module in enumerate(self.input_blocks): + if isinstance(module, nn.Conv1d): + h_tok = F.interpolate(module(code_emb), size=(h.shape[-1]), mode='nearest') + h = h + h_tok + else: + with autocast(x.device.type, enabled=self.enable_fp16 and not first): + # First block has autocast disabled to allow a high precision signal to be properly vectorized. + h = module(h, time_emb) + hs.append(h) + first = False + h = self.middle_block(h, time_emb) + for module in self.output_blocks: + h = torch.cat([h, hs.pop()], dim=1) + h = module(h, time_emb) + + # Last block also has autocast disabled for high-precision outputs. + h = h.float() + out = self.out(h) + + # Involve probabilistic or possibly unused parameters in loss so we don't get DDP errors. + extraneous_addition = 0 + params = [self.aligned_latent_padding_embedding, self.unconditioned_embedding] + list(self.latent_converter.parameters()) + for p in params: + extraneous_addition = extraneous_addition + p.mean() + out = out + extraneous_addition * 0 + + return out[:, :, :orig_x_shape] + + +@register_model +def register_unet_diffusion_waveform_gen3(opt_net, opt): + return DiffusionTts(**opt_net['kwargs']) + + +if __name__ == '__main__': + clip = torch.randn(2, 1, 32868) + aligned_latent = torch.randn(2,388,1024) + aligned_sequence = torch.randn(2,120,220) + ts = torch.LongTensor([600, 600]) + model = DiffusionTts(128, + channel_mult=[1,1.5,2, 3, 4, 6, 8], + num_res_blocks=[2, 2, 2, 2, 2, 2, 1], + token_conditioning_resolutions=[1,4,16,64], + num_heads=8, + kernel_size=3, + scale_factor=2, + time_embed_dim_multiplier=4, + efficient_convs=False) + # Test with latent aligned conditioning + o = model(clip, ts, aligned_latent) + # Test with sequence aligned conditioning + o = model(clip, ts, aligned_sequence) +