Check in speech2speech CLIP inference tool

This commit is contained in:
James Betker 2021-12-29 00:19:44 -07:00
parent c1bef01dfa
commit b24a51f0aa
4 changed files with 123 additions and 1 deletions

View File

@ -70,6 +70,14 @@ class VoiceCLIP(nn.Module):
loss = (F.cross_entropy(sim, labels) + F.cross_entropy(sim.t(), labels)) / 2
return loss
def inference(self, speech_mels):
emb = self.encoder(speech_mels)
latent = self.to_latent(emb)
latent = F.normalize(latent, p=2, dim=-1)
temp = self.temperature.exp()
sim = einsum('i d, j d -> i j', latent, latent) * temp
return sim
@register_model
def register_voice_to_voice_clip(opt_net, opt):

View File

@ -0,0 +1,113 @@
import argparse
import functools
import os
from multiprocessing.pool import ThreadPool
import torch
import torch.nn as nn
import torch.nn.functional as F
import yaml
from tqdm import tqdm
from data.audio.unsupervised_audio_dataset import load_audio
from data.util import is_wav_file, find_files_of_type, is_audio_file
from models.audio_resnet import resnet34, resnet50
from models.tacotron2.taco_utils import load_wav_to_torch
from scripts.audio.gen.speech_synthesis_utils import wav_to_mel
from scripts.byol.byol_extract_wrapped_model import extract_byol_model_from_state_dict
from utils.options import Loader
from utils.util import load_model_from_config
clip_model = None
def recursively_find_audio_directories(root):
subdirs = []
audio_files = []
for f in os.scandir(root):
if f.is_dir():
subdirs.append(f)
elif is_audio_file(f.path):
audio_files.append(f.path)
assert len(subdirs) == 0 or len(audio_files) == 0
if len(subdirs) > 0:
res = []
for subdir in subdirs:
res.extend(recursively_find_audio_directories(subdir.path))
return res
return [(root, audio_files)]
def process_subdir(subdir, options, clip_sz):
global clip_model
if clip_model is None:
print('Loading CLIP model..')
clip_model = load_model_from_config(preloaded_options=options, model_name='clip', also_load_savepoint=True)
root, paths = subdir
root = str(root)
clips = []
for path in paths:
clip = load_audio(str(path), 22050)
padding = clip_sz - clip.shape[1]
if padding > 0:
clip = F.pad(clip, (0, padding))
elif padding < 0:
clip = clip[:, :clip_sz]
clips.append(clip)
sims = None
while len(clips) > 0:
stacked = torch.stack(clips[:256], dim=0).cuda()
clips = clips[256:]
mels = wav_to_mel(stacked)
outp = clip_model.inference(mels)
if sims is None:
sims = outp
else:
if outp.shape[-1] != 256:
outp = F.pad(outp, (0,256-outp.shape[-1]))
sims = torch.cat([sims, outp], dim=0)
simmap = {}
for path, sim in zip(paths, sims):
n = min(4, len(sim))
top3 = torch.topk(sim, n)
rel = os.path.relpath(str(path), root)
simpaths = []
if n == 1:
simpaths.append(rel)
else:
for i in range(1,n): # The first entry is always the file itself.
top_ind = top3.indices[i]
simpaths.append(os.path.relpath(paths[top_ind], root))
simmap[rel] = simpaths
torch.save(simmap, os.path.join(root, 'similarities.pth'))
if __name__ == '__main__':
"""
This script iterates within a directory filled with subdirs. Each subdir contains a list of audio files from the same
source. The script uses an speech-to-speech clip model to find the <n> most similar audio clips within each subdir for
each clip within that subdir.
"""
parser = argparse.ArgumentParser()
parser.add_argument('-o', type=str, help='Path to the options YAML file used to train the CLIP model', default='../options/train_voice_voice_clip.yml')
parser.add_argument('--num_workers', type=int, help='Number concurrent processes to use', default=1)
parser.add_argument('--root_path', type=str, help='Root path to search for audio directories from', default='Z:\\clips\\podcasts-0\\7_Joe Rogan Experience #1004 - W. Kamau Bell')
parser.add_argument('--clip_size', type=int, help='Amount of audio samples to pull from each file', default=22050)
args = parser.parse_args()
with open(args.o, mode='r') as f:
opt = yaml.load(f, Loader=Loader)
all_files = recursively_find_audio_directories(args.root_path)
fn = functools.partial(process_subdir, options=opt, clip_sz=args.clip_size)
if args.num_workers > 1:
with ThreadPool(args.num_workers) as pool:
tqdm(list(pool.imap(fn, all_files)), total=len(all_files))
else:
for subdir in tqdm(all_files):
fn(subdir)

View File

@ -286,7 +286,7 @@ class Trainer:
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('-opt', type=str, help='Path to option YAML file.', default='../options/train_gpt_asr_mass_hf.yml')
parser.add_argument('-opt', type=str, help='Path to option YAML file.', default='../options/train_gpt_asr_mass_hf2.yml')
parser.add_argument('--launcher', choices=['none', 'pytorch'], default='none', help='job launcher')
parser.add_argument('--local_rank', type=int, default=0)
args = parser.parse_args()

View File

@ -485,5 +485,6 @@ def load_model_from_config(cfg_file=None, model_name=None, dev='cuda', also_load
assert load_path is None
load_path = opt['path'][f'pretrain_model_{model_name}']
if load_path is not None:
print(f"Loading from {load_path}")
model.load_state_dict(torch.load(load_path))
return model