diff --git a/.gitignore b/.gitignore
index c210e361..a83bc02e 100644
--- a/.gitignore
+++ b/.gitignore
@@ -18,6 +18,7 @@ data/*
*.cu
*.pt
*.pth
+*.pdf
# template
diff --git a/.idea/misc.xml b/.idea/misc.xml
index c637d58b..e29deb3f 100644
--- a/.idea/misc.xml
+++ b/.idea/misc.xml
@@ -3,5 +3,5 @@
-
+
\ No newline at end of file
diff --git a/.idea/mmsr.iml b/.idea/mmsr.iml
index 2e483868..dbe33fc9 100644
--- a/.idea/mmsr.iml
+++ b/.idea/mmsr.iml
@@ -9,7 +9,7 @@
-
+
diff --git a/codes/data/image_folder_dataset.py b/codes/data/image_folder_dataset.py
index a7973bdb..d1b69edb 100644
--- a/codes/data/image_folder_dataset.py
+++ b/codes/data/image_folder_dataset.py
@@ -5,10 +5,14 @@ import random
import cv2
import kornia
import numpy as np
+import pytorch_ssim
import torch
import os
+import torchvision
+from torch.utils.data import DataLoader
from torchvision.transforms import Normalize
+from tqdm import tqdm
from data import util
# Builds a dataset created from a simple folder containing a list of training/test/validation images.
@@ -140,7 +144,7 @@ class ImageFolderDataset:
if self.normalize:
hq = self.normalize(hq)
- out_dict = {'hq': hq, 'LQ_path': self.image_paths[item], 'HQ_path': self.image_paths[item]}
+ out_dict = {'hq': hq, 'LQ_path': self.image_paths[item], 'HQ_path': self.image_paths[item], 'has_alt': False}
if self.fetch_alt_image:
# This works by assuming a specific filename structure as would produced by ffmpeg. ex:
@@ -165,6 +169,7 @@ class ImageFolderDataset:
alt_hq = util.read_img(None, next_img, rgb=True)
alt_hs = self.resize_hq([alt_hq])
alt_hq = torch.from_numpy(np.ascontiguousarray(np.transpose(alt_hs[0], (2, 0, 1)))).float()
+ out_dict['has_alt'] = True
if not self.skip_lq:
for_lq.append(alt_hs[0])
except:
@@ -200,33 +205,25 @@ class ImageFolderDataset:
if __name__ == '__main__':
opt = {
'name': 'amalgam',
- 'paths': ['F:\\4k6k\\datasets\\images\\youtube\\4k_quote_unquote\\images'],
+ 'paths': ['E:\\4k6k\\datasets\\ns_images\\256_unsupervised'],
'weights': [1],
'target_size': 256,
- 'force_multiple': 32,
+ 'force_multiple': 1,
'scale': 2,
- 'fixed_corruptions': ['jpeg-broad', 'gaussian_blur'],
- 'random_corruptions': ['noise-5', 'none'],
- 'num_corrupts_per_image': 1,
- 'corrupt_before_downsize': False,
+ 'corrupt_before_downsize': True,
'fetch_alt_image': True,
- #'labeler': {
- # 'type': 'patch_labels',
- # 'label_file': 'F:\\4k6k\\datasets\\ns_images\\512_unsupervised\\categories_new.json'
- #}
+ 'disable_flip': True,
+ 'fixed_corruptions': [ 'jpeg-broad' ],
+ 'num_corrupts_per_image': 0,
+ 'corruption_blur_scale': 0
}
- ds = ImageFolderDataset(opt)
+ ds = DataLoader(ImageFolderDataset(opt), shuffle=True, num_workers=2)
import os
- os.makedirs("debug", exist_ok=True)
- for i in range(0, len(ds)):
- o = ds[random.randint(0, len(ds)-1)]
- hq = o['lq']
- #masked = (o['labels_mask'] * .5 + .5) * hq
- import torchvision
- torchvision.utils.save_image(hq.unsqueeze(0), "debug/%i_lq.png" % (i,))
- torchvision.utils.save_image(o['alt_lq'].unsqueeze(0), "debug/%i_lq_alt.png" % (i,))
- #if len(o['labels'].unique()) > 1:
- # randlbl = np.random.choice(o['labels'].unique()[1:])
- # moremask = hq * ((1*(o['labels'] == randlbl))*.5+.5)
- # torchvision.utils.save_image(moremask.unsqueeze(0), "debug/%i_%s.png" % (i, o['label_strings'][randlbl]))
\ No newline at end of file
+ output_path = 'E:\\4k6k\\datasets\\ns_images\\128_unsupervised'
+ os.makedirs(output_path, exist_ok=True)
+ for i, d in tqdm(enumerate(ds)):
+ lq = d['lq']
+ torchvision.utils.save_image(lq[:,:,16:-16,:], f'{output_path}\\{i+500000}.png')
+ if i >= 200000:
+ break
\ No newline at end of file
diff --git a/codes/models/global_convs/gc_resnet.py b/codes/models/global_convs/gc_resnet.py
new file mode 100644
index 00000000..e69de29b
diff --git a/codes/scripts/byol/tsne_torch.py b/codes/scripts/byol/tsne_torch.py
index 503f4d65..9a70eb77 100644
--- a/codes/scripts/byol/tsne_torch.py
+++ b/codes/scripts/byol/tsne_torch.py
@@ -208,7 +208,7 @@ def run_tsne_instance_level():
print("Run Y = tsne.tsne(X, no_dims, perplexity) to perform t-SNE on your dataset.")
limit = 4000
- X, files = torch.load('results.pth')
+ X, files = torch.load('../results_instance_resnet.pth')
zipped = list(zip(X, files))
shuffle(zipped)
X, files = zip(*zipped)
@@ -242,7 +242,7 @@ def run_tsne_instance_level():
# Uses the results from the calculation above to create a **massive** pdf plot that shows 1/8 size images on the tsne
# spectrum.
def plot_instance_level_results_as_image_graph():
- Y, files = torch.load('tsne_output.pth')
+ Y, files = torch.load('../tsne_output.pth')
fig, ax = pyplot.subplots()
fig.set_size_inches(200,200,forward=True)
ax.update_datalim(np.column_stack([Y[:, 0], Y[:, 1]]))
@@ -250,7 +250,7 @@ def plot_instance_level_results_as_image_graph():
for b in tqdm(range(Y.shape[0])):
im = pyplot.imread(files[b])
- im = OffsetImage(im, zoom=1/8)
+ im = OffsetImage(im, zoom=1/2)
ab = AnnotationBbox(im, (Y[b, 0], Y[b, 1]), xycoords='data', frameon=False)
ax.add_artist(ab)
ax.scatter(Y[:, 0], Y[:, 1])
@@ -277,7 +277,7 @@ def run_tsne_pixel_level():
'''
# For resnet-style latent tuples
- X, files = torch.load('../results.pth')
+ X, files = torch.load('../../results/2021-4-8-imgset-latent-dict.pth')
zipped = list(zip(X, files))
shuffle(zipped)
X, files = zip(*zipped)
@@ -347,8 +347,8 @@ def plot_pixel_level_results_as_image_graph():
if __name__ == "__main__":
# For use with instance-level results (e.g. from byol_resnet_playground.py)
#run_tsne_instance_level()
- #plot_instance_level_results_as_image_graph()
+ plot_instance_level_results_as_image_graph()
# For use with pixel-level results (e.g. from byol_uresnet_playground)
#run_tsne_pixel_level()
- plot_pixel_level_results_as_image_graph()
\ No newline at end of file
+ #plot_pixel_level_results_as_image_graph()
\ No newline at end of file
diff --git a/codes/scripts/extract_square_images.py b/codes/scripts/extract_square_images.py
index de502e23..0eeae7ed 100644
--- a/codes/scripts/extract_square_images.py
+++ b/codes/scripts/extract_square_images.py
@@ -19,9 +19,9 @@ def main():
# compression time. If read raw images during training, use 0 for faster IO speed.
opt['dest'] = 'file'
- opt['input_folder'] = ['E:\\4k6k\\datasets\\images\\faces\\CelebAMask-HQ\\CelebA-HQ-img']
- opt['save_folder'] = 'E:\\4k6k\\datasets\\images\\faces\\CelebAMask-HQ\\256px'
- opt['imgsize'] = 256
+ opt['input_folder'] = ['E:\\4k6k\\datasets\\images\\lsun\\lsun\\cats']
+ opt['save_folder'] = 'E:\\4k6k\\datasets\\images\\lsun\\lsun\\cats\\256_4_by_3'
+ opt['imgsize'] = (256,192)
opt['bottom_crop'] = 0
opt['keep_folder'] = False
@@ -66,15 +66,25 @@ class TiledDataset(data.Dataset):
h, w, c = img.shape
# Uncomment to filter any image that doesnt meet a threshold size.
- if min(h,w) < self.opt['imgsize']:
+ imgsz_w, imgsz_h = self.opt['imgsize']
+ if w < imgsz_w or h < imgsz_h:
print("Skipping due to threshold")
return None
- # We must convert the image into a square.
- dim = min(h, w)
- # Crop the image so that only the center is left, since this is often the most salient part of the image.
- img = img[(h - dim) // 2:dim + (h - dim) // 2, (w - dim) // 2:dim + (w - dim) // 2, :]
- img = cv2.resize(img, (self.opt['imgsize'], self.opt['imgsize']), interpolation=cv2.INTER_AREA)
+ # We must first center-crop the image to the proper aspect ratio
+ aspect_ratio = imgsz_h / imgsz_w
+ if h < w * aspect_ratio:
+ hdim = h
+ wdim = int(h / aspect_ratio)
+ elif w * aspect_ratio < h:
+ hdim = int(w * aspect_ratio)
+ wdim = w
+ else:
+ hdim = h
+ wdim = w
+ img = img[(h - hdim) // 2:hdim + (h - hdim) // 2, (w - wdim) // 2:wdim + (w - wdim) // 2, :]
+
+ img = cv2.resize(img, (imgsz_w, imgsz_h), interpolation=cv2.INTER_AREA)
output_folder = self.opt['save_folder']
if self.opt['keep_folder']:
# Attempt to find the folder name one level above opt['input_folder'] and use that.
diff --git a/codes/train2.py b/codes/train2.py
deleted file mode 100644
index 27155799..00000000
--- a/codes/train2.py
+++ /dev/null
@@ -1,325 +0,0 @@
-import os
-import math
-import argparse
-import random
-import logging
-from tqdm import tqdm
-
-import torch
-from data.data_sampler import DistIterSampler
-from trainer.eval.evaluator import create_evaluator
-
-from utils import util, options as option
-from data import create_dataloader, create_dataset
-from trainer.ExtensibleTrainer import ExtensibleTrainer
-from time import time
-
-def init_dist(backend, **kwargs):
- # These packages have globals that screw with Windows, so only import them if needed.
- import torch.distributed as dist
- import torch.multiprocessing as mp
-
- """initialization for distributed training"""
- if mp.get_start_method(allow_none=True) != 'spawn':
- mp.set_start_method('spawn')
- rank = int(os.environ['RANK'])
- num_gpus = torch.cuda.device_count()
- torch.cuda.set_device(rank % num_gpus)
- dist.init_process_group(backend=backend, **kwargs)
-
-class Trainer:
-
- def init(self, opt, launcher, all_networks={}):
- self._profile = False
- self.val_compute_psnr = opt['eval']['compute_psnr'] if 'compute_psnr' in opt['eval'].keys() else True
- self.val_compute_fea = opt['eval']['compute_fea'] if 'compute_fea' in opt['eval'].keys() else True
-
- #### loading resume state if exists
- if opt['path'].get('resume_state', None):
- # distributed resuming: all load into default GPU
- device_id = torch.cuda.current_device()
- resume_state = torch.load(opt['path']['resume_state'],
- map_location=lambda storage, loc: storage.cuda(device_id))
- option.check_resume(opt, resume_state['iter']) # check resume options
- else:
- resume_state = None
-
- #### mkdir and loggers
- if self.rank <= 0: # normal training (self.rank -1) OR distributed training (self.rank 0)
- if resume_state is None:
- util.mkdir_and_rename(
- opt['path']['experiments_root']) # rename experiment folder if exists
- util.mkdirs(
- (path for key, path in opt['path'].items() if not key == 'experiments_root' and path is not None
- and 'pretrain_model' not in key and 'resume' not in key))
-
- # config loggers. Before it, the log will not work
- util.setup_logger('base', opt['path']['log'], 'train_' + opt['name'], level=logging.INFO,
- screen=True, tofile=True)
- self.logger = logging.getLogger('base')
- self.logger.info(option.dict2str(opt))
- # tensorboard logger
- if opt['use_tb_logger'] and 'debug' not in opt['name']:
- self.tb_logger_path = os.path.join(opt['path']['experiments_root'], 'tb_logger')
- version = float(torch.__version__[0:3])
- if version >= 1.1: # PyTorch 1.1
- from torch.utils.tensorboard import SummaryWriter
- else:
- self.self.logger.info(
- 'You are using PyTorch {}. Tensorboard will use [tensorboardX]'.format(version))
- from tensorboardX import SummaryWriter
- self.tb_logger = SummaryWriter(log_dir=self.tb_logger_path)
- else:
- util.setup_logger('base', opt['path']['log'], 'train', level=logging.INFO, screen=True)
- self.logger = logging.getLogger('base')
-
- # convert to NoneDict, which returns None for missing keys
- opt = option.dict_to_nonedict(opt)
- self.opt = opt
-
- #### wandb init
- if opt['wandb']:
- import wandb
- os.makedirs(os.path.join(opt['path']['log'], 'wandb'), exist_ok=True)
- wandb.init(project=opt['name'], dir=opt['path']['log'])
-
- #### random seed
- seed = opt['train']['manual_seed']
- if seed is None:
- seed = random.randint(1, 10000)
- if self.rank <= 0:
- self.logger.info('Random seed: {}'.format(seed))
- seed += self.rank # Different multiprocessing instances should behave differently.
- util.set_random_seed(seed)
-
- torch.backends.cudnn.benchmark = True
- # torch.backends.cudnn.deterministic = True
- # torch.autograd.set_detect_anomaly(True)
-
- # Save the compiled opt dict to the global loaded_options variable.
- util.loaded_options = opt
-
- #### create train and val dataloader
- dataset_ratio = 1 # enlarge the size of each epoch
- for phase, dataset_opt in opt['datasets'].items():
- if phase == 'train':
- self.train_set = create_dataset(dataset_opt)
- train_size = int(math.ceil(len(self.train_set) / dataset_opt['batch_size']))
- total_iters = int(opt['train']['niter'])
- self.total_epochs = int(math.ceil(total_iters / train_size))
- if opt['dist']:
- self.train_sampler = DistIterSampler(self.train_set, self.world_size, self.rank, dataset_ratio)
- self.total_epochs = int(math.ceil(total_iters / (train_size * dataset_ratio)))
- else:
- self.train_sampler = None
- self.train_loader = create_dataloader(self.train_set, dataset_opt, opt, self.train_sampler)
- if self.rank <= 0:
- self.logger.info('Number of train images: {:,d}, iters: {:,d}'.format(
- len(self.train_set), train_size))
- self.logger.info('Total epochs needed: {:d} for iters {:,d}'.format(
- self.total_epochs, total_iters))
- elif phase == 'val':
- self.val_set = create_dataset(dataset_opt)
- self.val_loader = create_dataloader(self.val_set, dataset_opt, opt, None)
- if self.rank <= 0:
- self.logger.info('Number of val images in [{:s}]: {:d}'.format(
- dataset_opt['name'], len(self.val_set)))
- else:
- raise NotImplementedError('Phase [{:s}] is not recognized.'.format(phase))
- assert self.train_loader is not None
-
- #### create model
- self.model = ExtensibleTrainer(opt, cached_networks=all_networks)
-
- ### Evaluators
- self.evaluators = []
- if 'evaluators' in opt['eval'].keys():
- for ev_key, ev_opt in opt['eval']['evaluators'].items():
- self.evaluators.append(create_evaluator(self.model.networks[ev_opt['for']],
- ev_opt, self.model.env))
-
- #### resume training
- if resume_state:
- self.logger.info('Resuming training from epoch: {}, iter: {}.'.format(
- resume_state['epoch'], resume_state['iter']))
-
- self.start_epoch = resume_state['epoch']
- self.current_step = resume_state['iter']
- self.model.resume_training(resume_state, 'amp_opt_level' in opt.keys()) # handle optimizers and schedulers
- else:
- self.current_step = -1 if 'start_step' not in opt.keys() else opt['start_step']
- self.start_epoch = 0
- if 'force_start_step' in opt.keys():
- self.current_step = opt['force_start_step']
- opt['current_step'] = self.current_step
-
- def do_step(self, train_data):
- if self._profile:
- print("Data fetch: %f" % (time() - _t))
- _t = time()
-
- opt = self.opt
- self.current_step += 1
- #### update learning rate
- self.model.update_learning_rate(self.current_step, warmup_iter=opt['train']['warmup_iter'])
-
- #### training
- if self._profile:
- print("Update LR: %f" % (time() - _t))
- _t = time()
- self.model.feed_data(train_data, self.current_step)
- self.model.optimize_parameters(self.current_step)
- if self._profile:
- print("Model feed + step: %f" % (time() - _t))
- _t = time()
-
- #### log
- if self.current_step % opt['logger']['print_freq'] == 0 and self.rank <= 0:
- logs = self.model.get_current_log(self.current_step)
- message = '[epoch:{:3d}, iter:{:8,d}, lr:('.format(self.epoch, self.current_step)
- for v in self.model.get_current_learning_rate():
- message += '{:.3e},'.format(v)
- message += ')] '
- for k, v in logs.items():
- if 'histogram' in k:
- self.tb_logger.add_histogram(k, v, self.current_step)
- elif isinstance(v, dict):
- self.tb_logger.add_scalars(k, v, self.current_step)
- else:
- message += '{:s}: {:.4e} '.format(k, v)
- # tensorboard logger
- if opt['use_tb_logger'] and 'debug' not in opt['name']:
- self.tb_logger.add_scalar(k, v, self.current_step)
- if opt['wandb']:
- import wandb
- wandb.log(logs)
- self.logger.info(message)
-
- #### save models and training states
- if self.current_step % opt['logger']['save_checkpoint_freq'] == 0:
- if self.rank <= 0:
- self.logger.info('Saving models and training states.')
- self.model.save(self.current_step)
- self.model.save_training_state(self.epoch, self.current_step)
- if 'alt_path' in opt['path'].keys():
- import shutil
- print("Synchronizing tb_logger to alt_path..")
- alt_tblogger = os.path.join(opt['path']['alt_path'], "tb_logger")
- shutil.rmtree(alt_tblogger, ignore_errors=True)
- shutil.copytree(self.tb_logger_path, alt_tblogger)
-
- #### validation
- if opt['datasets'].get('val', None) and self.current_step % opt['train']['val_freq'] == 0:
- if opt['model'] in ['sr', 'srgan', 'corruptgan', 'spsrgan',
- 'extensibletrainer'] and self.rank <= 0: # image restoration validation
- avg_psnr = 0.
- avg_fea_loss = 0.
- idx = 0
- val_tqdm = tqdm(self.val_loader)
- for val_data in val_tqdm:
- idx += 1
- for b in range(len(val_data['HQ_path'])):
- img_name = os.path.splitext(os.path.basename(val_data['HQ_path'][b]))[0]
- img_dir = os.path.join(opt['path']['val_images'], img_name)
-
- util.mkdir(img_dir)
-
- self.model.feed_data(val_data, self.current_step)
- self.model.test()
-
- visuals = self.model.get_current_visuals()
- if visuals is None:
- continue
-
- sr_img = util.tensor2img(visuals['rlt'][b]) # uint8
- # calculate PSNR
- if self.val_compute_psnr:
- gt_img = util.tensor2img(visuals['hq'][b]) # uint8
- sr_img, gt_img = util.crop_border([sr_img, gt_img], opt['scale'])
- avg_psnr += util.calculate_psnr(sr_img, gt_img)
-
- # calculate fea loss
- if self.val_compute_fea:
- avg_fea_loss += self.model.compute_fea_loss(visuals['rlt'][b], visuals['hq'][b])
-
- # Save SR images for reference
- img_base_name = '{:s}_{:d}.png'.format(img_name, self.current_step)
- save_img_path = os.path.join(img_dir, img_base_name)
- util.save_img(sr_img, save_img_path)
-
- avg_psnr = avg_psnr / idx
- avg_fea_loss = avg_fea_loss / idx
-
- # log
- self.logger.info('# Validation # PSNR: {:.4e} Fea: {:.4e}'.format(avg_psnr, avg_fea_loss))
-
- # tensorboard logger
- if opt['use_tb_logger'] and 'debug' not in opt['name'] and self.rank <= 0:
- self.tb_logger.add_scalar('val_psnr', avg_psnr, self.current_step)
- self.tb_logger.add_scalar('val_fea', avg_fea_loss, self.current_step)
-
- if len(self.evaluators) != 0 and self.current_step % opt['train']['val_freq'] == 0 and self.rank <= 0:
- eval_dict = {}
- for eval in self.evaluators:
- eval_dict.update(eval.perform_eval())
- if self.rank <= 0:
- print("Evaluator results: ", eval_dict)
- for ek, ev in eval_dict.items():
- self.tb_logger.add_scalar(ek, ev, self.current_step)
-
- def do_training(self):
- self.logger.info('Start training from epoch: {:d}, iter: {:d}'.format(self.start_epoch, self.current_step))
- for epoch in range(self.start_epoch, self.total_epochs + 1):
- self.epoch = epoch
- if opt['dist']:
- self.train_sampler.set_epoch(epoch)
- tq_ldr = tqdm(self.train_loader)
-
- _t = time()
- for train_data in tq_ldr:
- self.do_step(train_data)
-
- def create_training_generator(self, index):
- self.logger.info('Start training from epoch: {:d}, iter: {:d}'.format(self.start_epoch, self.current_step))
- for epoch in range(self.start_epoch, self.total_epochs + 1):
- self.epoch = epoch
- if self.opt['dist']:
- self.train_sampler.set_epoch(epoch)
- tq_ldr = tqdm(self.train_loader, position=index)
-
- _t = time()
- for train_data in tq_ldr:
- yield self.model
- self.do_step(train_data)
-
-
-if __name__ == '__main__':
- parser = argparse.ArgumentParser()
- parser.add_argument('-opt', type=str, help='Path to option YAML file.', default='../options/train_imgset_pixpro_3.yml')
- parser.add_argument('--launcher', choices=['none', 'pytorch'], default='none', help='job launcher')
- parser.add_argument('--local_rank', type=int, default=0)
- args = parser.parse_args()
- opt = option.parse(args.opt, is_train=True)
- if args.launcher != 'none':
- # export CUDA_VISIBLE_DEVICES for running in distributed mode.
- if 'gpu_ids' in opt.keys():
- gpu_list = ','.join(str(x) for x in opt['gpu_ids'])
- os.environ['CUDA_VISIBLE_DEVICES'] = gpu_list
- print('export CUDA_VISIBLE_DEVICES=' + gpu_list)
- trainer = Trainer()
-
- #### distributed training settings
- if args.launcher == 'none': # disabled distributed training
- opt['dist'] = False
- trainer.rank = -1
- if len(opt['gpu_ids']) == 1:
- torch.cuda.set_device(opt['gpu_ids'][0])
- print('Disabled distributed training.')
- else:
- opt['dist'] = True
- init_dist('nccl')
- trainer.world_size = torch.distributed.get_world_size()
- trainer.rank = torch.distributed.get_rank()
-
- trainer.init(opt, args.launcher)
- trainer.do_training()
diff --git a/recipes/stylegan/README.md b/recipes/stylegan/README.md
new file mode 100644
index 00000000..08787f4a
--- /dev/null
+++ b/recipes/stylegan/README.md
@@ -0,0 +1,10 @@
+# StyleGAN Implementations
+DLAS supports two different StyleGAN2 implementations:
+
+- [@rosinality implementation](https://github.com/rosinality/stylegan2-pytorch/commits/master)
+ Designed to reach parity with the nVidia reference implementation in TF1.5
+- [@lucidrains implementation](https://github.com/lucidrains/stylegan2-pytorch)
+ Designed with simplicity and readability in mind.
+
+I prefer the readability of @lucidrains implementation, but you cannot (yet) use pretrained weights
+with it. I'm working on that.