When skipping steps via "every", still run nontrainable injection points
This commit is contained in:
parent
91d27372e4
commit
b742d1e5a5
|
@ -172,9 +172,11 @@ class ExtensibleTrainer(BaseModel):
|
|||
# Iterate through the steps, performing them one at a time.
|
||||
state = self.dstate
|
||||
for step_num, s in enumerate(self.steps):
|
||||
train_step = True
|
||||
# 'every' is used to denote steps that should only occur at a certain integer factor rate. e.g. '2' occurs every 2 steps.
|
||||
# Note that the injection points for the step might still be required, so address this by setting train_step=False
|
||||
if 'every' in s.step_opt.keys() and step % s.step_opt['every'] != 0:
|
||||
continue
|
||||
train_step = False
|
||||
# Steps can opt out of early (or late) training, make sure that happens here.
|
||||
if 'after' in s.step_opt.keys() and step < s.step_opt['after'] or 'before' in s.step_opt.keys() and step > s.step_opt['before']:
|
||||
continue
|
||||
|
@ -187,33 +189,34 @@ class ExtensibleTrainer(BaseModel):
|
|||
if not requirements_met:
|
||||
continue
|
||||
|
||||
# Only set requires_grad=True for the network being trained.
|
||||
nets_to_train = s.get_networks_trained()
|
||||
enabled = 0
|
||||
for name, net in self.networks.items():
|
||||
net_enabled = name in nets_to_train
|
||||
if net_enabled:
|
||||
enabled += 1
|
||||
# Networks can opt out of training before a certain iteration by declaring 'after' in their definition.
|
||||
if 'after' in self.opt['networks'][name].keys() and step < self.opt['networks'][name]['after']:
|
||||
net_enabled = False
|
||||
for p in net.parameters():
|
||||
if p.dtype != torch.int64 and p.dtype != torch.bool and not hasattr(p, "DO_NOT_TRAIN"):
|
||||
p.requires_grad = net_enabled
|
||||
else:
|
||||
p.requires_grad = False
|
||||
assert enabled == len(nets_to_train)
|
||||
if train_step:
|
||||
# Only set requires_grad=True for the network being trained.
|
||||
nets_to_train = s.get_networks_trained()
|
||||
enabled = 0
|
||||
for name, net in self.networks.items():
|
||||
net_enabled = name in nets_to_train
|
||||
if net_enabled:
|
||||
enabled += 1
|
||||
# Networks can opt out of training before a certain iteration by declaring 'after' in their definition.
|
||||
if 'after' in self.opt['networks'][name].keys() and step < self.opt['networks'][name]['after']:
|
||||
net_enabled = False
|
||||
for p in net.parameters():
|
||||
if p.dtype != torch.int64 and p.dtype != torch.bool and not hasattr(p, "DO_NOT_TRAIN"):
|
||||
p.requires_grad = net_enabled
|
||||
else:
|
||||
p.requires_grad = False
|
||||
assert enabled == len(nets_to_train)
|
||||
|
||||
# Update experiments
|
||||
[e.before_step(self.opt, self.step_names[step_num], self.env, nets_to_train, state) for e in self.experiments]
|
||||
# Update experiments
|
||||
[e.before_step(self.opt, self.step_names[step_num], self.env, nets_to_train, state) for e in self.experiments]
|
||||
|
||||
for o in s.get_optimizers():
|
||||
o.zero_grad()
|
||||
for o in s.get_optimizers():
|
||||
o.zero_grad()
|
||||
|
||||
# Now do a forward and backward pass for each gradient accumulation step.
|
||||
new_states = {}
|
||||
for m in range(self.mega_batch_factor):
|
||||
ns = s.do_forward_backward(state, m, step_num)
|
||||
ns = s.do_forward_backward(state, m, step_num, train=train_step)
|
||||
for k, v in ns.items():
|
||||
if k not in new_states.keys():
|
||||
new_states[k] = [v]
|
||||
|
@ -226,10 +229,11 @@ class ExtensibleTrainer(BaseModel):
|
|||
assert k not in state.keys()
|
||||
state[k] = v
|
||||
|
||||
# And finally perform optimization.
|
||||
[e.before_optimize(state) for e in self.experiments]
|
||||
s.do_step(step)
|
||||
[e.after_optimize(state) for e in self.experiments]
|
||||
if train_step:
|
||||
# And finally perform optimization.
|
||||
[e.before_optimize(state) for e in self.experiments]
|
||||
s.do_step(step)
|
||||
[e.after_optimize(state) for e in self.experiments]
|
||||
|
||||
# Record visual outputs for usage in debugging and testing.
|
||||
if 'visuals' in self.opt['logger'].keys() and self.rank <= 0 and step % self.opt['logger']['visual_debug_rate'] == 0:
|
||||
|
|
|
@ -204,6 +204,7 @@ class GeneratorGanLoss(ConfigurableLoss):
|
|||
pred_d_real = pred_d_real.detach()
|
||||
pred_g_fake = netD(*fake)
|
||||
d_fake_diff = pred_g_fake - torch.mean(pred_d_real)
|
||||
self.metrics.append(("d_fake", torch.mean(pred_g_fake)))
|
||||
self.metrics.append(("d_fake_diff", torch.mean(d_fake_diff)))
|
||||
loss = (self.criterion(pred_d_real - torch.mean(pred_g_fake), False) +
|
||||
self.criterion(d_fake_diff, True)) / 2
|
||||
|
|
Loading…
Reference in New Issue
Block a user