diff --git a/codes/models/waveglow/__init__.py b/codes/models/waveglow/__init__.py new file mode 100644 index 00000000..e69de29b diff --git a/codes/models/waveglow/denoiser.py b/codes/models/waveglow/denoiser.py new file mode 100644 index 00000000..600e1412 --- /dev/null +++ b/codes/models/waveglow/denoiser.py @@ -0,0 +1,42 @@ +import sys + +from models.tacotron2.stft import STFT + +sys.path.append('tacotron2') +import torch + + +class Denoiser(torch.nn.Module): + """ Removes model bias from audio produced with waveglow """ + + def __init__(self, waveglow, filter_length=1024, n_overlap=4, + win_length=1024, mode='zeros'): + super(Denoiser, self).__init__() + self.stft = STFT(filter_length=filter_length, + hop_length=int(filter_length/n_overlap), + win_length=win_length).cuda() + if mode == 'zeros': + mel_input = torch.zeros( + (1, 80, 88), + dtype=waveglow.upsample.weight.dtype, + device=waveglow.upsample.weight.device) + elif mode == 'normal': + mel_input = torch.randn( + (1, 80, 88), + dtype=waveglow.upsample.weight.dtype, + device=waveglow.upsample.weight.device) + else: + raise Exception("Mode {} if not supported".format(mode)) + + with torch.no_grad(): + bias_audio = waveglow.infer(mel_input, sigma=0.0).float() + bias_spec, _ = self.stft.transform(bias_audio) + + self.register_buffer('bias_spec', bias_spec[:, :, 0][:, :, None]) + + def forward(self, audio, strength=0.1): + audio_spec, audio_angles = self.stft.transform(audio.cuda().float()) + audio_spec_denoised = audio_spec - self.bias_spec * strength + audio_spec_denoised = torch.clamp(audio_spec_denoised, 0.0) + audio_denoised = self.stft.inverse(audio_spec_denoised, audio_angles) + return audio_denoised diff --git a/codes/models/waveglow/waveglow.py b/codes/models/waveglow/waveglow.py new file mode 100644 index 00000000..f45ddbe3 --- /dev/null +++ b/codes/models/waveglow/waveglow.py @@ -0,0 +1,318 @@ +# ***************************************************************************** +# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved. +# +# Redistribution and use in source and binary forms, with or without +# modification, are permitted provided that the following conditions are met: +# * Redistributions of source code must retain the above copyright +# notice, this list of conditions and the following disclaimer. +# * Redistributions in binary form must reproduce the above copyright +# notice, this list of conditions and the following disclaimer in the +# documentation and/or other materials provided with the distribution. +# * Neither the name of the NVIDIA CORPORATION nor the +# names of its contributors may be used to endorse or promote products +# derived from this software without specific prior written permission. +# +# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND +# ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED +# WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE +# DISCLAIMED. IN NO EVENT SHALL NVIDIA CORPORATION BE LIABLE FOR ANY +# DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES +# (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; +# LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND +# ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT +# (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS +# SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. +# +# ***************************************************************************** +import copy +import torch +from torch.autograd import Variable +import torch.nn.functional as F + +from trainer.networks import register_model + + +@torch.jit.script +def fused_add_tanh_sigmoid_multiply(input_a, input_b, n_channels): + n_channels_int = n_channels[0] + in_act = input_a+input_b + t_act = torch.tanh(in_act[:, :n_channels_int, :]) + s_act = torch.sigmoid(in_act[:, n_channels_int:, :]) + acts = t_act * s_act + return acts + + +class WaveGlowLoss(torch.nn.Module): + def __init__(self, sigma=1.0): + super(WaveGlowLoss, self).__init__() + self.sigma = sigma + + def forward(self, model_output): + z, log_s_list, log_det_W_list = model_output + for i, log_s in enumerate(log_s_list): + if i == 0: + log_s_total = torch.sum(log_s) + log_det_W_total = log_det_W_list[i] + else: + log_s_total = log_s_total + torch.sum(log_s) + log_det_W_total += log_det_W_list[i] + + loss = torch.sum(z*z)/(2*self.sigma*self.sigma) - log_s_total - log_det_W_total + return loss/(z.size(0)*z.size(1)*z.size(2)) + + +class Invertible1x1Conv(torch.nn.Module): + """ + The layer outputs both the convolution, and the log determinant + of its weight matrix. If reverse=True it does convolution with + inverse + """ + def __init__(self, c): + super(Invertible1x1Conv, self).__init__() + self.conv = torch.nn.Conv1d(c, c, kernel_size=1, stride=1, padding=0, + bias=False) + + # Sample a random orthonormal matrix to initialize weights + W = torch.qr(torch.FloatTensor(c, c).normal_())[0] + + # Ensure determinant is 1.0 not -1.0 + if torch.det(W) < 0: + W[:,0] = -1*W[:,0] + W = W.view(c, c, 1) + self.conv.weight.data = W + + def forward(self, z, reverse=False): + # shape + batch_size, group_size, n_of_groups = z.size() + + W = self.conv.weight.squeeze() + + if reverse: + if not hasattr(self, 'W_inverse'): + # Reverse computation + W_inverse = W.float().inverse() + W_inverse = Variable(W_inverse[..., None]) + if z.type() == 'torch.cuda.HalfTensor': + W_inverse = W_inverse.half() + self.W_inverse = W_inverse + z = F.conv1d(z, self.W_inverse, bias=None, stride=1, padding=0) + return z + else: + # Forward computation + log_det_W = batch_size * n_of_groups * torch.logdet(W) + z = self.conv(z) + return z, log_det_W + + +class WN(torch.nn.Module): + """ + This is the WaveNet like layer for the affine coupling. The primary difference + from WaveNet is the convolutions need not be causal. There is also no dilation + size reset. The dilation only doubles on each layer + """ + def __init__(self, n_in_channels, n_mel_channels, n_layers, n_channels, + kernel_size): + super(WN, self).__init__() + assert(kernel_size % 2 == 1) + assert(n_channels % 2 == 0) + self.n_layers = n_layers + self.n_channels = n_channels + self.in_layers = torch.nn.ModuleList() + self.res_skip_layers = torch.nn.ModuleList() + + start = torch.nn.Conv1d(n_in_channels, n_channels, 1) + start = torch.nn.utils.weight_norm(start, name='weight') + self.start = start + + # Initializing last layer to 0 makes the affine coupling layers + # do nothing at first. This helps with training stability + end = torch.nn.Conv1d(n_channels, 2*n_in_channels, 1) + end.weight.data.zero_() + end.bias.data.zero_() + self.end = end + + cond_layer = torch.nn.Conv1d(n_mel_channels, 2*n_channels*n_layers, 1) + self.cond_layer = torch.nn.utils.weight_norm(cond_layer, name='weight') + + for i in range(n_layers): + dilation = 2 ** i + padding = int((kernel_size*dilation - dilation)/2) + in_layer = torch.nn.Conv1d(n_channels, 2*n_channels, kernel_size, + dilation=dilation, padding=padding) + in_layer = torch.nn.utils.weight_norm(in_layer, name='weight') + self.in_layers.append(in_layer) + + + # last one is not necessary + if i < n_layers - 1: + res_skip_channels = 2*n_channels + else: + res_skip_channels = n_channels + res_skip_layer = torch.nn.Conv1d(n_channels, res_skip_channels, 1) + res_skip_layer = torch.nn.utils.weight_norm(res_skip_layer, name='weight') + self.res_skip_layers.append(res_skip_layer) + + def forward(self, forward_input): + audio, spect = forward_input + audio = self.start(audio) + output = torch.zeros_like(audio) + n_channels_tensor = torch.IntTensor([self.n_channels]) + + spect = self.cond_layer(spect) + + for i in range(self.n_layers): + spect_offset = i*2*self.n_channels + acts = fused_add_tanh_sigmoid_multiply( + self.in_layers[i](audio), + spect[:,spect_offset:spect_offset+2*self.n_channels,:], + n_channels_tensor) + + res_skip_acts = self.res_skip_layers[i](acts) + if i < self.n_layers - 1: + audio = audio + res_skip_acts[:,:self.n_channels,:] + output = output + res_skip_acts[:,self.n_channels:,:] + else: + output = output + res_skip_acts + + return self.end(output) + + +class WaveGlow(torch.nn.Module): + def __init__(self, n_mel_channels, n_flows, n_group, n_early_every, + n_early_size, WN_config): + super(WaveGlow, self).__init__() + + self.upsample = torch.nn.ConvTranspose1d(n_mel_channels, + n_mel_channels, + 1024, stride=256) + assert(n_group % 2 == 0) + self.n_flows = n_flows + self.n_group = n_group + self.n_early_every = n_early_every + self.n_early_size = n_early_size + self.WN = torch.nn.ModuleList() + self.convinv = torch.nn.ModuleList() + + n_half = int(n_group/2) + + # Set up layers with the right sizes based on how many dimensions + # have been output already + n_remaining_channels = n_group + for k in range(n_flows): + if k % self.n_early_every == 0 and k > 0: + n_half = n_half - int(self.n_early_size/2) + n_remaining_channels = n_remaining_channels - self.n_early_size + self.convinv.append(Invertible1x1Conv(n_remaining_channels)) + self.WN.append(WN(n_half, n_mel_channels*n_group, **WN_config)) + self.n_remaining_channels = n_remaining_channels # Useful during inference + + def forward(self, forward_input): + """ + forward_input[0] = mel_spectrogram: batch x n_mel_channels x frames + forward_input[1] = audio: batch x time + """ + spect, audio = forward_input + + # Upsample spectrogram to size of audio + spect = self.upsample(spect) + assert(spect.size(2) >= audio.size(1)) + if spect.size(2) > audio.size(1): + spect = spect[:, :, :audio.size(1)] + + spect = spect.unfold(2, self.n_group, self.n_group).permute(0, 2, 1, 3) + spect = spect.contiguous().view(spect.size(0), spect.size(1), -1).permute(0, 2, 1) + + audio = audio.unfold(1, self.n_group, self.n_group).permute(0, 2, 1) + output_audio = [] + log_s_list = [] + log_det_W_list = [] + + for k in range(self.n_flows): + if k % self.n_early_every == 0 and k > 0: + output_audio.append(audio[:,:self.n_early_size,:]) + audio = audio[:,self.n_early_size:,:] + + audio, log_det_W = self.convinv[k](audio) + log_det_W_list.append(log_det_W) + + n_half = int(audio.size(1)/2) + audio_0 = audio[:,:n_half,:] + audio_1 = audio[:,n_half:,:] + + output = self.WN[k]((audio_0, spect)) + log_s = output[:, n_half:, :] + b = output[:, :n_half, :] + audio_1 = torch.exp(log_s)*audio_1 + b + log_s_list.append(log_s) + + audio = torch.cat([audio_0, audio_1],1) + + output_audio.append(audio) + return torch.cat(output_audio,1), log_s_list, log_det_W_list + + def infer(self, spect, sigma=1.0): + spect = self.upsample(spect) + # trim conv artifacts. maybe pad spec to kernel multiple + time_cutoff = self.upsample.kernel_size[0] - self.upsample.stride[0] + spect = spect[:, :, :-time_cutoff] + + spect = spect.unfold(2, self.n_group, self.n_group).permute(0, 2, 1, 3) + spect = spect.contiguous().view(spect.size(0), spect.size(1), -1).permute(0, 2, 1) + + if spect.type() == 'torch.cuda.HalfTensor': + audio = torch.cuda.HalfTensor(spect.size(0), + self.n_remaining_channels, + spect.size(2)).normal_() + else: + audio = torch.cuda.FloatTensor(spect.size(0), + self.n_remaining_channels, + spect.size(2)).normal_() + + audio = torch.autograd.Variable(sigma*audio) + + for k in reversed(range(self.n_flows)): + n_half = int(audio.size(1)/2) + audio_0 = audio[:,:n_half,:] + audio_1 = audio[:,n_half:,:] + + output = self.WN[k]((audio_0, spect)) + + s = output[:, n_half:, :] + b = output[:, :n_half, :] + audio_1 = (audio_1 - b)/torch.exp(s) + audio = torch.cat([audio_0, audio_1],1) + + audio = self.convinv[k](audio, reverse=True) + + if k % self.n_early_every == 0 and k > 0: + if spect.type() == 'torch.cuda.HalfTensor': + z = torch.cuda.HalfTensor(spect.size(0), self.n_early_size, spect.size(2)).normal_() + else: + z = torch.cuda.FloatTensor(spect.size(0), self.n_early_size, spect.size(2)).normal_() + audio = torch.cat((sigma*z, audio),1) + + audio = audio.permute(0,2,1).contiguous().view(audio.size(0), -1).data + return audio + + @staticmethod + def remove_weightnorm(model): + waveglow = model + for WN in waveglow.WN: + WN.start = torch.nn.utils.remove_weight_norm(WN.start) + WN.in_layers = remove(WN.in_layers) + WN.cond_layer = torch.nn.utils.remove_weight_norm(WN.cond_layer) + WN.res_skip_layers = remove(WN.res_skip_layers) + return waveglow + + +def remove(conv_list): + new_conv_list = torch.nn.ModuleList() + for old_conv in conv_list: + old_conv = torch.nn.utils.remove_weight_norm(old_conv) + new_conv_list.append(old_conv) + return new_conv_list + + +@register_model +def register_nv_waveglow(opt_net, opt): + return WaveGlow(**opt_net['args']) \ No newline at end of file diff --git a/codes/scripts/audio/test_audio_gen.py b/codes/scripts/audio/test_audio_gen.py new file mode 100644 index 00000000..e8046d93 --- /dev/null +++ b/codes/scripts/audio/test_audio_gen.py @@ -0,0 +1,72 @@ +import os.path as osp +import logging +import random +import argparse + +import utils +import utils.options as option +import utils.util as util +from models.waveglow.denoiser import Denoiser +from trainer.ExtensibleTrainer import ExtensibleTrainer +from data import create_dataset, create_dataloader +from tqdm import tqdm +import torch +import numpy as np +from scipy.io import wavfile + + +def forward_pass(model, denoiser, data, output_dir, opt, b): + with torch.no_grad(): + model.feed_data(data, 0) + model.test() + waveforms = model.eval_state[opt['eval']['output_state']][0] + waveforms = denoiser(waveforms) + for i in range(waveforms.shape[0]): + audio = waveforms[i][0].cpu().numpy() + wavfile.write(osp.join(output_dir, f'{b}_{i}.wav'), 22050, audio) + + +if __name__ == "__main__": + # Set seeds + torch.manual_seed(5555) + random.seed(5555) + np.random.seed(5555) + + #### options + torch.backends.cudnn.benchmark = True + want_metrics = False + parser = argparse.ArgumentParser() + parser.add_argument('-opt', type=str, help='Path to options YAML file.', default='../options/test_tacotron2_lj.yml') + opt = option.parse(parser.parse_args().opt, is_train=False) + opt = option.dict_to_nonedict(opt) + utils.util.loaded_options = opt + + util.mkdirs( + (path for key, path in opt['path'].items() + if not key == 'experiments_root' and 'pretrain_model' not in key and 'resume' not in key)) + util.setup_logger('base', opt['path']['log'], 'test_' + opt['name'], level=logging.INFO, + screen=True, tofile=True) + logger = logging.getLogger('base') + logger.info(option.dict2str(opt)) + + test_loaders = [] + for phase, dataset_opt in sorted(opt['datasets'].items()): + test_set, collate_fn = create_dataset(dataset_opt, return_collate=True) + test_loader = create_dataloader(test_set, dataset_opt, collate_fn=collate_fn) + logger.info('Number of test texts in [{:s}]: {:d}'.format(dataset_opt['name'], len(test_set))) + test_loaders.append(test_loader) + + model = ExtensibleTrainer(opt) + + denoiser = Denoiser(model.networks['waveglow'].module) # Pretty hacky, need to figure out a better way to integrate this. + + batch = 0 + for test_loader in test_loaders: + dataset_dir = opt['path']['results_root'] + util.mkdir(dataset_dir) + + tq = tqdm(test_loader) + for data in tq: + forward_pass(model, denoiser, data, dataset_dir, opt, batch) + batch += 1 + diff --git a/codes/trainer/injectors/base_injectors.py b/codes/trainer/injectors/base_injectors.py index 7463504e..221181ee 100644 --- a/codes/trainer/injectors/base_injectors.py +++ b/codes/trainer/injectors/base_injectors.py @@ -16,19 +16,25 @@ class GeneratorInjector(Injector): def __init__(self, opt, env): super(GeneratorInjector, self).__init__(opt, env) self.grad = opt['grad'] if 'grad' in opt.keys() else True + self.method = opt_get(opt, ['method'], None) # If specified, this method is called instead of __call__() def forward(self, state): gen = self.env['generators'][self.opt['generator']] + + if self.method is not None and hasattr(gen, 'module'): + gen = gen.module # Dereference DDP wrapper. + method = gen if self.method is None else getattr(gen, self.method) + with autocast(enabled=self.env['opt']['fp16']): if isinstance(self.input, list): params = extract_params_from_state(self.input, state) else: params = [state[self.input]] if self.grad: - results = gen(*params) + results = method(*params) else: with torch.no_grad(): - results = gen(*params) + results = method(*params) new_state = {} if isinstance(self.output, list): # Only dereference tuples or lists, not tensors. diff --git a/codes/utils/util.py b/codes/utils/util.py index daac4e9f..ac0c9888 100644 --- a/codes/utils/util.py +++ b/codes/utils/util.py @@ -393,6 +393,7 @@ def recursively_detach(v): return out def opt_get(opt, keys, default=None): + assert not isinstance(keys, str) # Common mistake, better to assert. if opt is None: return default ret = opt