GptAsrHf2 checkin

This commit is contained in:
James Betker 2021-12-28 20:48:38 -07:00
parent 07c2b9907c
commit c1bef01dfa
3 changed files with 16 additions and 13 deletions

View File

@ -31,19 +31,19 @@ class ResBlock(nn.Module):
class MelEncoder(nn.Module): class MelEncoder(nn.Module):
def __init__(self, channels, mel_channels=80): def __init__(self, channels, mel_channels=80, resblocks_per_reduction=2):
super().__init__() super().__init__()
self.channels = channels self.channels = channels
self.encoder = nn.Sequential(nn.Conv1d(mel_channels, channels//4, kernel_size=3, padding=1), self.encoder = nn.Sequential(nn.Conv1d(mel_channels, channels//4, kernel_size=3, padding=1),
ResBlock(channels//4), nn.Sequential(*[ResBlock(channels//4) for _ in range(resblocks_per_reduction)]),
nn.Conv1d(channels//4, channels//2, kernel_size=3, stride=2, padding=1), nn.Conv1d(channels//4, channels//2, kernel_size=3, stride=2, padding=1),
nn.GroupNorm(channels//16, channels//2), nn.GroupNorm(channels//16, channels//2),
nn.ReLU(), nn.ReLU(),
ResBlock(channels//2), nn.Sequential(*[ResBlock(channels//2) for _ in range(resblocks_per_reduction)]),
nn.Conv1d(channels//2, channels, kernel_size=3, stride=2, padding=1), nn.Conv1d(channels//2, channels, kernel_size=3, stride=2, padding=1),
nn.GroupNorm(channels//8, channels), nn.GroupNorm(channels//8, channels),
nn.ReLU(), nn.ReLU(),
ResBlock(channels) nn.Sequential(*[ResBlock(channels) for _ in range(resblocks_per_reduction)]),
) )
def forward(self, x): def forward(self, x):
@ -211,20 +211,20 @@ def null_position_embeddings(range, dim):
class GptAsrHf2(nn.Module): class GptAsrHf2(nn.Module):
def __init__(self, layers=8, model_dim=512, heads=8, max_symbols_per_phrase=800, max_mel_frames=3000, checkpointing=True, def __init__(self, layers=8, model_dim=512, heads=8, max_symbols_per_phrase=800, max_mel_frames=3000, checkpointing=True,
number_text_tokens=512, start_token=511, stop_token=0): number_text_tokens=512, start_token=511, stop_token=0, mel_encoder_resblocks_per_level=2):
super().__init__() super().__init__()
self.number_text_tokens = number_text_tokens self.number_text_tokens = number_text_tokens
self.start_token = start_token self.start_token = start_token
self.stop_token = 0 self.stop_token = stop_token
self.max_mel_frames = max_mel_frames // 4 # Mel frames are reduced by a factor of 4 during encoding. self.max_mel_frames = max_mel_frames // 4 # Mel frames are reduced by a factor of 4 during encoding.
self.max_symbols_per_phrase = max_symbols_per_phrase self.max_symbols_per_phrase = max_symbols_per_phrase
self.model_dim = model_dim self.model_dim = model_dim
self.max_mel_frames = self.max_mel_frames self.max_mel_frames = self.max_mel_frames
self.mel_encoder = MelEncoder(model_dim) self.mel_encoder = MelEncoder(model_dim, resblocks_per_reduction=mel_encoder_resblocks_per_level)
self.text_pos_embedding = nn.Embedding(self.max_symbols_per_phrase + 1, model_dim)
self.text_pos_embedding = nn.Embedding(self.max_symbols_per_phrase + 1, model_dim) self.text_pos_embedding = nn.Embedding(self.max_symbols_per_phrase + 1, model_dim)
self.text_solo_pos_embedding = nn.Embedding(self.max_symbols_per_phrase + 1, model_dim)
self.mel_pos_embedding = nn.Embedding(self.max_mel_frames, model_dim) self.mel_pos_embedding = nn.Embedding(self.max_mel_frames, model_dim)
seq_length = 2+self.max_symbols_per_phrase+self.max_mel_frames seq_length = 2+self.max_symbols_per_phrase+self.max_mel_frames
self.gpt_config = GPT2Config(vocab_size=self.number_text_tokens, self.gpt_config = GPT2Config(vocab_size=self.number_text_tokens,
@ -236,6 +236,8 @@ class GptAsrHf2(nn.Module):
gradient_checkpointing=checkpointing, gradient_checkpointing=checkpointing,
use_cache=not checkpointing) use_cache=not checkpointing)
self.gpt = GPT2Model(self.gpt_config) self.gpt = GPT2Model(self.gpt_config)
self.text_solo_embedding = nn.Parameter(torch.randn(1,1,512) * self.gpt.config.initializer_range, requires_grad=True)
# Override the built in positional embeddings # Override the built in positional embeddings
del self.gpt.wpe del self.gpt.wpe
self.gpt.wpe = functools.partial(null_position_embeddings, dim=model_dim) self.gpt.wpe = functools.partial(null_position_embeddings, dim=model_dim)
@ -244,7 +246,7 @@ class GptAsrHf2(nn.Module):
self.text_head = nn.Linear(model_dim, self.number_text_tokens) self.text_head = nn.Linear(model_dim, self.number_text_tokens)
# Initialize the embeddings per the GPT-2 scheme # Initialize the embeddings per the GPT-2 scheme
for module in [self.text_pos_embedding, self.text_solo_pos_embedding, self.mel_pos_embedding]: for module in [self.text_pos_embedding, self.mel_pos_embedding]:
module.weight.data.normal_(mean=0.0, std=self.gpt.config.initializer_range) module.weight.data.normal_(mean=0.0, std=self.gpt.config.initializer_range)
if module.padding_idx is not None: if module.padding_idx is not None:
module.weight.data[module.padding_idx].zero_() module.weight.data[module.padding_idx].zero_()
@ -287,7 +289,8 @@ class GptAsrHf2(nn.Module):
def text_only(self, text_inputs): def text_only(self, text_inputs):
text_inputs, text_targets = self.build_aligned_inputs_and_targets(text_inputs, self.start_token, self.stop_token) text_inputs, text_targets = self.build_aligned_inputs_and_targets(text_inputs, self.start_token, self.stop_token)
text_emb = self.gpt.get_input_embeddings()(text_inputs) + \ text_emb = self.gpt.get_input_embeddings()(text_inputs) + \
self.text_pos_embedding(torch.arange(text_inputs.shape[1], device=text_inputs.device)) self.text_pos_embedding(torch.arange(text_inputs.shape[1], device=text_inputs.device)) + \
self.text_solo_embedding
text_logits = self.get_logits(None, text_emb) text_logits = self.get_logits(None, text_emb)
loss_text = F.cross_entropy(text_logits, text_targets.long()) loss_text = F.cross_entropy(text_logits, text_targets.long())
return loss_text.mean(), text_logits return loss_text.mean(), text_logits

View File

@ -88,7 +88,7 @@ if __name__ == '__main__':
parser.add_argument('-dvae_model_name', type=str, help='Name of the DVAE model in opt.', default='dvae') parser.add_argument('-dvae_model_name', type=str, help='Name of the DVAE model in opt.', default='dvae')
parser.add_argument('-opt_gpt_tts', type=str, help='Path to options YAML file used to train the GPT-TTS model', default='X:\\dlas\\experiments\\train_gpt_unified_voice.yml') parser.add_argument('-opt_gpt_tts', type=str, help='Path to options YAML file used to train the GPT-TTS model', default='X:\\dlas\\experiments\\train_gpt_unified_voice.yml')
parser.add_argument('-gpt_tts_model_name', type=str, help='Name of the GPT TTS model in opt.', default='gpt') parser.add_argument('-gpt_tts_model_name', type=str, help='Name of the GPT TTS model in opt.', default='gpt')
parser.add_argument('-gpt_tts_model_path', type=str, help='GPT TTS model checkpoint to load.', default='X:\\dlas\\experiments\\train_gpt_unified_voice\\models\\13750_gpt_ema.pth') parser.add_argument('-gpt_tts_model_path', type=str, help='GPT TTS model checkpoint to load.', default='X:\\dlas\\experiments\\train_gpt_unified_voice\\models\\54000_gpt.pth')
parser.add_argument('-text', type=str, help='Text to speak.', default="I am a language model that has learned to speak.") parser.add_argument('-text', type=str, help='Text to speak.', default="I am a language model that has learned to speak.")
parser.add_argument('-cond_path', type=str, help='Path to condioning sample.', default='') parser.add_argument('-cond_path', type=str, help='Path to condioning sample.', default='')
parser.add_argument('-cond_preset', type=str, help='Use a preset conditioning voice (defined above). Overrides cond_path.', default='libri_test') parser.add_argument('-cond_preset', type=str, help='Use a preset conditioning voice (defined above). Overrides cond_path.', default='libri_test')

View File

@ -286,7 +286,7 @@ class Trainer:
if __name__ == '__main__': if __name__ == '__main__':
parser = argparse.ArgumentParser() parser = argparse.ArgumentParser()
parser.add_argument('-opt', type=str, help='Path to option YAML file.', default='../options/train_voice_voice_clip.yml') parser.add_argument('-opt', type=str, help='Path to option YAML file.', default='../options/train_gpt_asr_mass_hf.yml')
parser.add_argument('--launcher', choices=['none', 'pytorch'], default='none', help='job launcher') parser.add_argument('--launcher', choices=['none', 'pytorch'], default='none', help='job launcher')
parser.add_argument('--local_rank', type=int, default=0) parser.add_argument('--local_rank', type=int, default=0)
args = parser.parse_args() args = parser.parse_args()