Undo baseline GDI changes
This commit is contained in:
parent
1287915f3c
commit
c30a38cdf1
|
@ -40,7 +40,7 @@ def forward_pass(model, data, output_dir, spacing, audio_mode):
|
|||
for suffix in suffixes:
|
||||
if audio_mode:
|
||||
save_img_path = osp.join(output_dir, img_name + suffix + '.wav')
|
||||
wavfile.write(osp.join(output_dir, save_img_path), 22050, sr_img[0].cpu().numpy())
|
||||
wavfile.write(osp.join(output_dir, save_img_path), 11025, sr_img[0].cpu().numpy())
|
||||
else:
|
||||
save_img_path = osp.join(output_dir, img_name + suffix + '.png')
|
||||
util.save_img(util.tensor2img(sr_img), save_img_path)
|
||||
|
@ -50,7 +50,9 @@ def load_image(path, audio_mode):
|
|||
# Load test image
|
||||
if audio_mode:
|
||||
im = load_audio(path, 22050)
|
||||
im = im[:, :(im.shape[1]//4096)*4096].unsqueeze(0)
|
||||
padding_needed = ((im.shape[1]//8192)+1)*8192-im.shape[1]
|
||||
im = torch.nn.functional.pad(im, (0, padding_needed))
|
||||
im = im[:, :(im.shape[1]//8192)*8192].unsqueeze(0)
|
||||
else:
|
||||
im = ToTensor()(Image.open(path)) * 2 - 1
|
||||
_, h, w = im.shape
|
||||
|
@ -80,7 +82,7 @@ if __name__ == "__main__":
|
|||
torch.backends.cudnn.benchmark = True
|
||||
want_metrics = False
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument('-opt', type=str, help='Path to options YAML file.', default='../options/test_diffusion_vocoder_10-28.yml')
|
||||
parser.add_argument('-opt', type=str, help='Path to options YAML file.', default='../options/test_diffusion_vocoder_dvae.yml')
|
||||
opt = option.parse(parser.parse_args().opt, is_train=False)
|
||||
opt = option.dict_to_nonedict(opt)
|
||||
utils.util.loaded_options = opt
|
||||
|
|
|
@ -109,7 +109,7 @@ class GaussianDiffusionInferenceInjector(Injector):
|
|||
model_inputs['low_res'].shape[-1] * self.output_scale_factor)
|
||||
dev = model_inputs['low_res'].device
|
||||
elif 'spectrogram' in model_inputs.keys():
|
||||
output_shape = (self.output_batch_size, 1, model_inputs['spectrogram'].shape[-1]*256)
|
||||
output_shape = (self.output_batch_size, 1, model_inputs['spectrogram'].shape[-1] * self.output_scale_factor)
|
||||
dev = model_inputs['spectrogram'].device
|
||||
elif 'discrete_spectrogram' in model_inputs.keys():
|
||||
output_shape = (self.output_batch_size, 1, model_inputs['discrete_spectrogram'].shape[-1]*1024)
|
||||
|
|
Loading…
Reference in New Issue
Block a user