more arbitrary fixes
This commit is contained in:
parent
c14fc003ed
commit
c5000420f6
|
@ -1,6 +1,7 @@
|
|||
import argparse
|
||||
import functools
|
||||
import os
|
||||
import sys
|
||||
from multiprocessing.pool import ThreadPool
|
||||
|
||||
import torch
|
||||
|
@ -54,13 +55,17 @@ def process_subdir(subdir, options, clip_sz):
|
|||
|
||||
clips = []
|
||||
for path in paths:
|
||||
clip = load_audio(str(path), 22050)
|
||||
padding = clip_sz - clip.shape[1]
|
||||
if padding > 0:
|
||||
clip = F.pad(clip, (0, padding))
|
||||
elif padding < 0:
|
||||
clip = clip[:, :clip_sz]
|
||||
clips.append(clip)
|
||||
try:
|
||||
clip = load_audio(str(path), 22050)
|
||||
padding = clip_sz - clip.shape[1]
|
||||
if padding > 0:
|
||||
clip = F.pad(clip, (0, padding))
|
||||
elif padding < 0:
|
||||
clip = clip[:, :clip_sz]
|
||||
clips.append(clip)
|
||||
except:
|
||||
print(f"Error processing {path}. Recovering gracefully.")
|
||||
print(sys.exc_info())
|
||||
sims = None
|
||||
while len(clips) > 0:
|
||||
stacked = torch.stack(clips[:256], dim=0).cuda()
|
||||
|
@ -101,7 +106,7 @@ if __name__ == '__main__':
|
|||
"""
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument('-o', type=str, help='Path to the options YAML file used to train the CLIP model', default='../options/train_voice_voice_clip.yml')
|
||||
parser.add_argument('--num_workers', type=int, help='Number concurrent processes to use', default=6)
|
||||
parser.add_argument('--num_workers', type=int, help='Number concurrent processes to use', default=2)
|
||||
parser.add_argument('--root_path', type=str, help='Root path to search for audio directories from', default='Y:\\filtered\\big_podcast')
|
||||
parser.add_argument('--clip_size', type=int, help='Amount of audio samples to pull from each file', default=22050)
|
||||
args = parser.parse_args()
|
||||
|
|
|
@ -6,7 +6,7 @@ import trainer.eval.evaluator as evaluator
|
|||
|
||||
# Evaluate how close to true Gaussian a flow network predicts in a "normal" pass given a LQ/HQ image pair.
|
||||
from data.images.image_folder_dataset import ImageFolderDataset
|
||||
from models.image_generation.srflow import GaussianDiag
|
||||
from models.image_generation.srflow.flow import GaussianDiag
|
||||
|
||||
|
||||
class FlowGaussianNll(evaluator.Evaluator):
|
||||
|
|
|
@ -6,7 +6,6 @@ from tqdm import tqdm
|
|||
import trainer.eval.evaluator as evaluator
|
||||
|
||||
from data.images.image_pair_with_corresponding_points_dataset import ImagePairWithCorrespondingPointsDataset
|
||||
from models.segformer.segformer import Segformer
|
||||
|
||||
|
||||
# Uses two datasets: a "similar" and "dissimilar" dataset, each of which contains pairs of images and similar/dissimilar
|
||||
|
|
Loading…
Reference in New Issue
Block a user