network updates

This commit is contained in:
James Betker 2022-06-08 09:26:59 -06:00
parent 5a54d7db11
commit c61cd64bc9
5 changed files with 233 additions and 27 deletions

View File

@ -369,7 +369,7 @@ class ResBlock(nn.Module):
def __init__(
self,
channels,
dropout,
dropout=0,
out_channels=None,
use_conv=False,
dims=2,

View File

@ -3,12 +3,12 @@ from torch import nn
import torch.nn.functional as F
from transformers import GPT2Config, GPT2Model
from models.arch_util import AttentionBlock
from models.arch_util import AttentionBlock, ResBlock
from models.audio.music.music_quantizer import MusicQuantizer
from models.audio.music.music_quantizer2 import MusicQuantizer2
from models.lucidrains.x_transformers import Encoder
from trainer.networks import register_model
from utils.util import opt_get
from utils.util import opt_get, checkpoint
class ConditioningEncoder(nn.Module):
@ -25,6 +25,32 @@ class ConditioningEncoder(nn.Module):
self.attn = nn.Sequential(*attn)
self.dim = embedding_dim
def forward(self, x):
h = checkpoint(self.init, x)
h = checkpoint(self.attn, h)
return h.mean(dim=2)
class UpperConditioningEncoder(nn.Module):
def __init__(self,
spec_dim,
embedding_dim,
attn_blocks=6,
num_attn_heads=4):
super().__init__()
attn = []
self.init = nn.Sequential(nn.Conv1d(spec_dim, min(spec_dim+128, embedding_dim), kernel_size=3, stride=2, padding=1),
nn.Conv1d(min(spec_dim+128, embedding_dim), min(spec_dim+256, embedding_dim), kernel_size=3, stride=2, padding=1),
nn.Conv1d(min(spec_dim+256, embedding_dim), min(spec_dim+384, embedding_dim), kernel_size=3, stride=2, padding=1),
nn.Conv1d(min(spec_dim+384, embedding_dim), min(spec_dim+512, embedding_dim), kernel_size=3, stride=2, padding=1),
ResBlock(min(spec_dim+512, embedding_dim), dims=1),
nn.Conv1d(min(spec_dim+512, embedding_dim), min(spec_dim+512, embedding_dim), kernel_size=3, stride=2, padding=1),
ResBlock(min(spec_dim+512, embedding_dim), dims=1))
for a in range(attn_blocks):
attn.append(AttentionBlock(embedding_dim, num_attn_heads, do_activation=True))
self.attn = nn.Sequential(*attn)
self.dim = embedding_dim
def forward(self, x):
h = self.init(x)
h = self.attn(h)
@ -135,12 +161,92 @@ class GptMusicLower(nn.Module):
)
class GptMusicUpper(nn.Module):
def __init__(self, dim, layers, dropout=0, num_upper_vectors=64, num_upper_groups=4):
super().__init__()
self.internal_step = 0
self.num_groups = num_upper_groups
self.config = GPT2Config(vocab_size=1, n_positions=8192, n_embd=dim, n_layer=layers, n_head=dim//64,
n_inner=dim*2, attn_pdrop=dropout, resid_pdrop=dropout, gradient_checkpointing=True,
use_cache=False)
self.upper_quantizer = MusicQuantizer2(inp_channels=256, inner_dim=[dim,
max(512,dim-128),
max(512,dim-256),
max(512,dim-384),
max(512,dim-512),
max(512,dim-512)], codevector_dim=dim,
codebook_size=num_upper_vectors, codebook_groups=num_upper_groups,
expressive_downsamples=True)
# Following are unused quantizer constructs we delete to avoid DDP errors (and to be efficient.. of course..)
del self.upper_quantizer.up
# Freeze the quantizer.
for p in self.upper_quantizer.parameters():
p.DO_NOT_TRAIN = True
p.requires_grad = False
self.conditioning_encoder = UpperConditioningEncoder(256, dim, attn_blocks=4, num_attn_heads=dim//64)
self.gpt = GPT2Model(self.config)
del self.gpt.wte # Unused, we'll do our own embeddings.
self.embeddings = nn.ModuleList([nn.Embedding(num_upper_vectors, dim // num_upper_groups) for _ in range(num_upper_groups)])
self.heads = nn.ModuleList([nn.Linear(dim, num_upper_vectors) for _ in range(num_upper_groups)])
def forward(self, mel, conditioning, return_latent=False):
with torch.no_grad():
self.upper_quantizer.eval()
codes = self.upper_quantizer.get_codes(mel)
inputs = codes[:, :-1]
targets = codes
h = [embedding(inputs[:, :, i]) for i, embedding in enumerate(self.embeddings)]
h = torch.cat(h, dim=-1)
with torch.autocast(mel.device.type):
# Stick the conditioning embedding on the front of the input sequence.
# The transformer will learn how to integrate it.
# This statement also serves to pre-pad the inputs by one token, which is the basis of the next-token-prediction task. IOW: this is the "START" token.
cond_emb = self.conditioning_encoder(conditioning).unsqueeze(1)
h = torch.cat([cond_emb, h], dim=1)
h = self.gpt(inputs_embeds=h, return_dict=True).last_hidden_state
if return_latent:
return h.float()
losses = 0
for i, head in enumerate(self.heads):
logits = head(h).permute(0,2,1)
loss = F.cross_entropy(logits, targets[:,:,i])
losses = losses + loss
return losses / self.num_groups
def get_grad_norm_parameter_groups(self):
groups = {
'gpt': list(self.gpt.parameters()),
'conditioning': list(self.conditioning_encoder.parameters()),
}
return groups
def get_debug_values(self, step, __):
if self.upper_quantizer.total_codes > 0:
return {'histogram_upper_codes': self.upper_quantizer.codes[:self.upper_quantizer.total_codes]}
else:
return {}
@register_model
def register_music_gpt_lower(opt_net, opt):
return GptMusicLower(**opt_get(opt_net, ['kwargs'], {}))
@register_model
def register_music_gpt_upper(opt_net, opt):
return GptMusicUpper(**opt_get(opt_net, ['kwargs'], {}))
if __name__ == '__main__':
def test_lower():
from models.audio.music.transformer_diffusion8 import TransformerDiffusionWithQuantizer
base_diff = TransformerDiffusionWithQuantizer(in_channels=256, out_channels=512, model_channels=2048, block_channels=1024,
prenet_channels=1024, prenet_layers=6, num_layers=16, input_vec_dim=1024,
@ -152,4 +258,19 @@ if __name__ == '__main__':
torch.save(model.state_dict(), "sample.pth")
mel = torch.randn(2,256,400)
model(mel, mel)
model.get_grad_norm_parameter_groups()
model.get_grad_norm_parameter_groups()
def test_upper():
lower = GptMusicLower(512, 12)
lower.load_state_dict(torch.load('D:\\dlas\\experiments\\train_music_gpt\\models\\44500_generator_ema.pth'))
model = GptMusicUpper(512, 12)
model.upper_quantizer.load_state_dict(lower.upper_quantizer.state_dict())
torch.save(model.state_dict(), 'sample.pth')
mel = torch.randn(2,256,2500)
model(mel, mel)
model.get_grad_norm_parameter_groups()
if __name__ == '__main__':
test_upper()

View File

@ -73,6 +73,7 @@ class TransformerDiffusion(nn.Module):
out_channels=512, # mean and variance
dropout=0,
use_fp16=False,
ar_prior=False,
# Parameters for regularization.
unconditioned_percentage=.1, # This implements a mechanism similar to what is used in classifier-free training.
):
@ -95,8 +96,10 @@ class TransformerDiffusion(nn.Module):
)
prenet_heads = prenet_channels//64
self.input_converter = nn.Linear(input_vec_dim, prenet_channels)
self.code_converter = Encoder(
self.ar_prior = ar_prior
if ar_prior:
self.ar_input = nn.Linear(input_vec_dim, prenet_channels)
self.ar_prior_intg = Encoder(
dim=prenet_channels,
depth=prenet_layers,
heads=prenet_heads,
@ -108,6 +111,20 @@ class TransformerDiffusion(nn.Module):
zero_init_branch_output=True,
ff_mult=1,
)
else:
self.input_converter = nn.Linear(input_vec_dim, prenet_channels)
self.code_converter = Encoder(
dim=prenet_channels,
depth=prenet_layers,
heads=prenet_heads,
ff_dropout=dropout,
attn_dropout=dropout,
use_rmsnorm=True,
ff_glu=True,
rotary_pos_emb=True,
zero_init_branch_output=True,
ff_mult=1,
)
self.unconditioned_embedding = nn.Parameter(torch.randn(1,1,prenet_channels))
self.rotary_embeddings = RotaryEmbedding(rotary_emb_dim)
@ -130,16 +147,16 @@ class TransformerDiffusion(nn.Module):
}
return groups
def timestep_independent(self, codes, expected_seq_len):
code_emb = self.input_converter(codes)
def timestep_independent(self, prior, expected_seq_len):
code_emb = self.ar_input(prior) if self.ar_prior else self.input_converter(prior)
# Mask out the conditioning branch for whole batch elements, implementing something similar to classifier-free guidance.
if self.training and self.unconditioned_percentage > 0:
unconditioned_batches = torch.rand((code_emb.shape[0], 1, 1),
device=code_emb.device) < self.unconditioned_percentage
code_emb = torch.where(unconditioned_batches, self.unconditioned_embedding.repeat(codes.shape[0], 1, 1),
code_emb = torch.where(unconditioned_batches, self.unconditioned_embedding.repeat(prior.shape[0], 1, 1),
code_emb)
code_emb = self.code_converter(code_emb)
code_emb = self.ar_prior_intg(code_emb) if self.ar_prior else self.code_converter(code_emb)
expanded_code_emb = F.interpolate(code_emb.permute(0,2,1), size=expected_seq_len, mode='nearest').permute(0,2,1)
return expanded_code_emb
@ -151,7 +168,6 @@ class TransformerDiffusion(nn.Module):
unused_params = []
if conditioning_free:
code_emb = self.unconditioned_embedding.repeat(x.shape[0], x.shape[-1], 1)
unused_params.extend(list(self.code_converter.parameters()))
else:
if precomputed_code_embeddings is not None:
code_emb = precomputed_code_embeddings
@ -240,6 +256,47 @@ class TransformerDiffusionWithQuantizer(nn.Module):
return groups
class TransformerDiffusionWithARPrior(nn.Module):
def __init__(self, freeze_diff=False, **kwargs):
super().__init__()
self.internal_step = 0
from models.audio.music.gpt_music import GptMusicLower
self.ar = GptMusicLower(dim=512, layers=12)
for p in self.ar.parameters():
p.DO_NOT_TRAIN = True
p.requires_grad = False
self.diff = TransformerDiffusion(ar_prior=True, **kwargs)
if freeze_diff:
for p in self.diff.parameters():
p.DO_NOT_TRAIN = True
p.requires_grad = False
for p in list(self.diff.ar_prior_intg.parameters()) + list(self.diff.ar_input.parameters()):
del p.DO_NOT_TRAIN
p.requires_grad = True
def get_grad_norm_parameter_groups(self):
groups = {
'attention_layers': list(itertools.chain.from_iterable([lyr.attn.parameters() for lyr in self.diff.layers])),
'ff_layers': list(itertools.chain.from_iterable([lyr.ff.parameters() for lyr in self.diff.layers])),
'rotary_embeddings': list(self.diff.rotary_embeddings.parameters()),
'out': list(self.diff.out.parameters()),
'x_proj': list(self.diff.inp_block.parameters()),
'layers': list(self.diff.layers.parameters()),
'ar_prior_intg': list(self.diff.ar_prior_intg.parameters()),
'time_embed': list(self.diff.time_embed.parameters()),
}
return groups
def forward(self, x, timesteps, truth_mel, disable_diversity=False, conditioning_input=None, conditioning_free=False):
with torch.no_grad():
prior = self.ar(truth_mel, conditioning_input, return_latent=True)
diff = self.diff(x, timesteps, prior, conditioning_free=conditioning_free)
return diff
@register_model
def register_transformer_diffusion8(opt_net, opt):
return TransformerDiffusion(**opt_net['kwargs'])
@ -250,24 +307,17 @@ def register_transformer_diffusion8_with_quantizer(opt_net, opt):
return TransformerDiffusionWithQuantizer(**opt_net['kwargs'])
"""
# For TFD5
if __name__ == '__main__':
clip = torch.randn(2, 256, 400)
aligned_sequence = torch.randn(2,100,512)
cond = torch.randn(2, 256, 400)
ts = torch.LongTensor([600, 600])
model = TransformerDiffusion(model_channels=3072, block_channels=1536, prenet_channels=1536)
torch.save(model, 'sample.pth')
print_network(model)
o = model(clip, ts, aligned_sequence, cond)
"""
@register_model
def register_transformer_diffusion8_with_ar_prior(opt_net, opt):
return TransformerDiffusionWithARPrior(**opt_net['kwargs'])
if __name__ == '__main__':
def test_quant_model():
clip = torch.randn(2, 256, 400)
cond = torch.randn(2, 256, 400)
ts = torch.LongTensor([600, 600])
model = TransformerDiffusionWithQuantizer(model_channels=2048, block_channels=1024, prenet_channels=1024, input_vec_dim=1024, num_layers=16, prenet_layers=6)
model = TransformerDiffusionWithQuantizer(model_channels=2048, block_channels=1024, prenet_channels=1024,
input_vec_dim=1024, num_layers=16, prenet_layers=6)
model.get_grad_norm_parameter_groups()
quant_weights = torch.load('D:\\dlas\\experiments\\train_music_quant_r4\\models\\5000_generator.pth')
@ -279,3 +329,28 @@ if __name__ == '__main__':
print_network(model)
o = model(clip, ts, clip, cond)
def test_ar_model():
clip = torch.randn(2, 256, 400)
cond = torch.randn(2, 256, 400)
ts = torch.LongTensor([600, 600])
model = TransformerDiffusionWithARPrior(model_channels=2048, block_channels=1024, prenet_channels=1024,
input_vec_dim=512, num_layers=16, prenet_layers=6, freeze_diff=True)
model.get_grad_norm_parameter_groups()
ar_weights = torch.load('D:\\dlas\\experiments\\train_music_gpt\\models\\44500_generator_ema.pth')
model.ar.load_state_dict(ar_weights, strict=True)
diff_weights = torch.load('X:\\dlas\\experiments\\train_music_diffusion_tfd8\\models\\47500_generator_ema.pth')
pruned_diff_weights = {}
for k,v in diff_weights.items():
if k.startswith('diff.'):
pruned_diff_weights[k.replace('diff.', '')] = v
model.diff.load_state_dict(pruned_diff_weights, strict=False)
torch.save(model.state_dict(), 'sample.pth')
model(clip, ts, cond, conditioning_input=cond)
if __name__ == '__main__':
test_ar_model()

View File

@ -780,6 +780,15 @@ class UNetMusicModelARPrior(nn.Module):
del p.DO_NOT_TRAIN
p.requires_grad = True
def get_grad_norm_parameter_groups(self):
groups = {
'input_blocks': list(self.diff.input_blocks.parameters()),
'output_blocks': list(self.diff.output_blocks.parameters()),
'ar_prior_intg': list(self.diff.ar_prior_intg.parameters()),
'time_embed': list(self.diff.time_embed.parameters()),
}
return groups
def forward(self, x, timesteps, truth_mel, disable_diversity=False, conditioning_input=None, conditioning_free=False):
with torch.no_grad():
prior = self.ar(truth_mel, conditioning_input, return_latent=True)
@ -805,6 +814,7 @@ if __name__ == '__main__':
attention_resolutions=(2,4), channel_mult=(1,2,3), dims=1,
use_scale_shift_norm=True, dropout=.1, num_heads=8, unconditioned_percentage=.4, freeze_unet=True)
print_network(model)
model.get_grad_norm_parameter_groups()
ar_weights = torch.load('D:\\dlas\\experiments\\train_music_gpt\\models\\44500_generator_ema.pth')
model.ar.load_state_dict(ar_weights, strict=True)

View File

@ -339,7 +339,7 @@ class Trainer:
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('-opt', type=str, help='Path to option YAML file.', default='../options/train_music_gpt.yml')
parser.add_argument('-opt', type=str, help='Path to option YAML file.', default='../options/train_music_gpt_upper.yml')
parser.add_argument('--launcher', choices=['none', 'pytorch'], default='none', help='job launcher')
args = parser.parse_args()
opt = option.parse(args.opt, is_train=True)