Train and use a bespoke tokenizer
This commit is contained in:
parent
66bc60aeff
commit
c737632eae
|
@ -6,6 +6,7 @@ import torch
|
|||
import torch.nn.functional as F
|
||||
import torch.utils.data
|
||||
import torchaudio
|
||||
from tokenizers import Tokenizer
|
||||
from tqdm import tqdm
|
||||
from transformers import GPT2TokenizerFast
|
||||
|
||||
|
@ -84,7 +85,7 @@ class TextWavLoader(torch.utils.data.Dataset):
|
|||
self.needs_collate = opt_get(hparams, ['needs_collate'], True)
|
||||
if not self.needs_collate:
|
||||
assert self.max_wav_len is not None and self.max_text_len is not None
|
||||
self.tokenizer = GPT2TokenizerFast.from_pretrained('gpt2')
|
||||
self.tokenizer = Tokenizer.from_file(opt_get(hparams, ['tokenizer_vocab'], '../experiments/gpt_tts_tokenizer.json'))
|
||||
|
||||
def get_wav_text_pair(self, audiopath_and_text):
|
||||
# separate filename and text
|
||||
|
@ -94,7 +95,11 @@ class TextWavLoader(torch.utils.data.Dataset):
|
|||
return (text_seq, wav, text, audiopath_and_text[0])
|
||||
|
||||
def get_text(self, text):
|
||||
return torch.IntTensor(self.tokenizer(text)['input_ids'])
|
||||
tokens = self.tokenizer.encode(text).ids
|
||||
tokens = torch.IntTensor(tokens)
|
||||
assert not torch.any(tokens == 0)
|
||||
assert not torch.any(tokens == 9999)
|
||||
return tokens
|
||||
|
||||
def load_conditioning_candidates(self, path):
|
||||
candidates = find_files_of_type('img', os.path.dirname(path), qualifier=is_audio_file)[0]
|
||||
|
|
47
codes/data/audio/voice_tokenizer_builder.py
Normal file
47
codes/data/audio/voice_tokenizer_builder.py
Normal file
|
@ -0,0 +1,47 @@
|
|||
from tokenizers import Tokenizer
|
||||
from tokenizers.models import BPE
|
||||
from tokenizers.pre_tokenizers import Whitespace
|
||||
from tokenizers.trainers import BpeTrainer
|
||||
|
||||
from data.audio.paired_voice_audio_dataset import load_mozilla_cv, load_voxpopuli, load_tsv
|
||||
from models.tacotron2.taco_utils import load_filepaths_and_text
|
||||
|
||||
|
||||
def build_text_file_from_priors(priors, output):
|
||||
with open(output, 'w', encoding='utf-8') as out:
|
||||
for p, fm in priors:
|
||||
if fm == 'lj' or fm == 'libritts':
|
||||
fetcher_fn = load_filepaths_and_text
|
||||
elif fm == 'tsv':
|
||||
fetcher_fn = load_tsv
|
||||
elif fm == 'mozilla_cv':
|
||||
fetcher_fn = load_mozilla_cv
|
||||
elif fm == 'voxpopuli':
|
||||
fetcher_fn = load_voxpopuli
|
||||
else:
|
||||
raise NotImplementedError()
|
||||
apt = fetcher_fn(p)
|
||||
for path, text in apt:
|
||||
out.write(text + "\n")
|
||||
out.flush()
|
||||
|
||||
|
||||
def train():
|
||||
trainer = BpeTrainer(special_tokens=['[STOP]', '[UNK]'], vocab_size=9999)
|
||||
tokenizer = Tokenizer(BPE(unk_token="[UNK]"))
|
||||
tokenizer.pre_tokenizer = Whitespace()
|
||||
tokenizer.train(['all_texts.txt'], trainer)
|
||||
tokenizer.save('gpt_tts_tokenizer.json')
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
'''
|
||||
build_text_file_from_priors([('Y:\\bigasr_dataset\\libritts\\train-all.txt', 'libritts'),
|
||||
('Y:\\bigasr_dataset\\libritts\\test-clean_list.txt', 'libritts'),
|
||||
#('Y:\\bigasr_dataset\\voxpopuli\\audio\\transcribed_data\\en\\asr_en.tsv', 'voxpopuli'),
|
||||
('Y:\\bigasr_dataset\\voxpopuli\\audio\\transcribed_data\\en\\asr_train.tsv', 'voxpopuli'),
|
||||
('Y:\\clips\\books1-transcribed.tsv', 'tsv'),
|
||||
('Y:\\clips\\books2-transcribed.tsv', 'tsv'),
|
||||
('Y:\\clips\\podcasts-0-transcribed.tsv', 'tsv')], 'all_texts.txt')
|
||||
'''
|
||||
train()
|
|
@ -39,16 +39,18 @@ class ConditioningEncoder(nn.Module):
|
|||
|
||||
|
||||
class GptTtsHf(nn.Module):
|
||||
NUMBER_TEXT_TOKENS = 50257 # The number of BPE tokens produced by the HF GPT2Tokenizer
|
||||
START_TEXT_TOKEN = 50256
|
||||
NUMBER_TEXT_TOKENS = 10000 # The number of tokens produced by our bespoke BPE tokenizer.
|
||||
START_TEXT_TOKEN = 9999
|
||||
STOP_TEXT_TOKEN = 0
|
||||
NUMBER_MEL_CODES = 8194
|
||||
START_MEL_TOKEN = 8192
|
||||
STOP_MEL_TOKEN = 8193
|
||||
|
||||
def __init__(self, layers=8, model_dim=512, heads=8, max_symbols_per_phrase=100, max_mel_tokens=250, max_conditioning_inputs=3,
|
||||
def __init__(self, layers=8, model_dim=512, heads=8, max_symbols_per_phrase=80, max_mel_tokens=250, max_conditioning_inputs=3,
|
||||
checkpointing=True, mel_length_compression=1024, max_conditioning_length=60):
|
||||
super().__init__()
|
||||
|
||||
|
||||
self.max_mel_tokens = max_mel_tokens
|
||||
self.max_symbols_per_phrase = max_symbols_per_phrase
|
||||
self.model_dim = model_dim
|
||||
|
|
Loading…
Reference in New Issue
Block a user