diff --git a/codes/data/audio/nv_tacotron_dataset.py b/codes/data/audio/nv_tacotron_dataset.py index 7ef6ce5b..6562e7a2 100644 --- a/codes/data/audio/nv_tacotron_dataset.py +++ b/codes/data/audio/nv_tacotron_dataset.py @@ -1,23 +1,27 @@ import os +import os import random -import audio2numpy -import numpy as np import torch -import torch.utils.data import torch.nn.functional as F +import torch.utils.data import torchaudio from tqdm import tqdm -import models.tacotron2.layers as layers from data.audio.unsupervised_audio_dataset import load_audio from data.util import find_files_of_type, is_audio_file -from models.tacotron2.taco_utils import load_wav_to_torch, load_filepaths_and_text - +from models.tacotron2.taco_utils import load_filepaths_and_text from models.tacotron2.text import text_to_sequence from utils.util import opt_get +def load_tsv(filename): + with open(filename, encoding='utf-8') as f: + components = [line.strip().split('\t') for line in f] + filepaths_and_text = [[component[1], component[0]] for component in components] + return filepaths_and_text + + def load_mozilla_cv(filename): with open(filename, encoding='utf-8') as f: components = [line.strip().split('\t') for line in f][1:] # First line is the header @@ -58,6 +62,8 @@ class TextWavLoader(torch.utils.data.Dataset): for p, fm in zip(self.path, fetcher_mode): if fm == 'lj' or fm == 'libritts': fetcher_fn = load_filepaths_and_text + elif fm == 'tsv': + fetcher_fn = load_tsv elif fm == 'mozilla_cv': assert not self.load_conditioning # Conditioning inputs are incompatible with mozilla_cv fetcher_fn = load_mozilla_cv @@ -109,12 +115,12 @@ class TextWavLoader(torch.utils.data.Dataset): return torch.stack(related_clips, dim=0) def __getitem__(self, index): - #try: - tseq, wav, text, path = self.get_wav_text_pair(self.audiopaths_and_text[index]) - cond = self.load_conditioning_candidates(self.audiopaths_and_text[index][0]) if self.load_conditioning else None - #except: - # print(f"error loading {self.audiopaths_and_text[index][0]}") - # return self[index+1] + try: + tseq, wav, text, path = self.get_wav_text_pair(self.audiopaths_and_text[index]) + cond = self.load_conditioning_candidates(self.audiopaths_and_text[index][0]) if self.load_conditioning else None + except: + print(f"error loading {self.audiopaths_and_text[index][0]}") + return self[index+1] if wav is None or \ (self.max_wav_len is not None and wav.shape[-1] > self.max_wav_len) or \ (self.max_text_len is not None and tseq.shape[0] > self.max_text_len): @@ -208,10 +214,10 @@ if __name__ == '__main__': params = { 'mode': 'nv_tacotron', 'path': ['Z:\\bigasr_dataset\\libritts\\test-clean_list.txt'], + 'fetcher_mode': ['libritts'], 'phase': 'train', 'n_workers': 0, 'batch_size': batch_sz, - 'fetcher_mode': ['libritts'], 'needs_collate': True, 'max_wav_length': 256000, 'max_text_length': 200,