Support >128px image squares
This commit is contained in:
parent
35a421f6ad
commit
cc834bd5a3
|
@ -4,7 +4,8 @@ import torchvision
|
||||||
|
|
||||||
|
|
||||||
class Discriminator_VGG_128(nn.Module):
|
class Discriminator_VGG_128(nn.Module):
|
||||||
def __init__(self, in_nc, nf):
|
# input_img_factor = multiplier to support images over 128x128. Only certain factors are supported.
|
||||||
|
def __init__(self, in_nc, nf, input_img_factor=1):
|
||||||
super(Discriminator_VGG_128, self).__init__()
|
super(Discriminator_VGG_128, self).__init__()
|
||||||
# [64, 128, 128]
|
# [64, 128, 128]
|
||||||
self.conv0_0 = nn.Conv2d(in_nc, nf, 3, 1, 1, bias=True)
|
self.conv0_0 = nn.Conv2d(in_nc, nf, 3, 1, 1, bias=True)
|
||||||
|
@ -31,7 +32,7 @@ class Discriminator_VGG_128(nn.Module):
|
||||||
self.conv4_1 = nn.Conv2d(nf * 8, nf * 8, 4, 2, 1, bias=False)
|
self.conv4_1 = nn.Conv2d(nf * 8, nf * 8, 4, 2, 1, bias=False)
|
||||||
self.bn4_1 = nn.BatchNorm2d(nf * 8, affine=True)
|
self.bn4_1 = nn.BatchNorm2d(nf * 8, affine=True)
|
||||||
|
|
||||||
self.linear1 = nn.Linear(512 * 4 * 4, 100)
|
self.linear1 = nn.Linear(512 * 4 * input_img_factor * 4 * input_img_factor, 100)
|
||||||
self.linear2 = nn.Linear(100, 1)
|
self.linear2 = nn.Linear(100, 1)
|
||||||
|
|
||||||
# activation function
|
# activation function
|
||||||
|
|
|
@ -32,11 +32,12 @@ def define_G(opt):
|
||||||
|
|
||||||
# Discriminator
|
# Discriminator
|
||||||
def define_D(opt):
|
def define_D(opt):
|
||||||
|
img_sz = opt['datasets']['train']['GT_size']
|
||||||
opt_net = opt['network_D']
|
opt_net = opt['network_D']
|
||||||
which_model = opt_net['which_model_D']
|
which_model = opt_net['which_model_D']
|
||||||
|
|
||||||
if which_model == 'discriminator_vgg_128':
|
if which_model == 'discriminator_vgg_128':
|
||||||
netD = SRGAN_arch.Discriminator_VGG_128(in_nc=opt_net['in_nc'], nf=opt_net['nf'])
|
netD = SRGAN_arch.Discriminator_VGG_128(in_nc=opt_net['in_nc'], nf=opt_net['nf'], input_img_factor=img_sz / 128)
|
||||||
else:
|
else:
|
||||||
raise NotImplementedError('Discriminator model [{:s}] not recognized'.format(which_model))
|
raise NotImplementedError('Discriminator model [{:s}] not recognized'.format(which_model))
|
||||||
return netD
|
return netD
|
||||||
|
|
Loading…
Reference in New Issue
Block a user