misc audio support

This commit is contained in:
James Betker 2022-03-08 15:52:26 -07:00
parent d553808d24
commit d2bdeb6f20

View File

@ -1,7 +1,10 @@
import os import os
import pathlib
import sys import sys
import time import time
import math import math
import scipy
import torch.nn.functional as F import torch.nn.functional as F
from datetime import datetime from datetime import datetime
import random import random
@ -10,6 +13,8 @@ from collections import OrderedDict
import numpy as np import numpy as np
import cv2 import cv2
import torch import torch
import torchaudio
from audio2numpy import open_audio
from torchvision.utils import make_grid from torchvision.utils import make_grid
from shutil import get_terminal_size from shutil import get_terminal_size
import scp import scp
@ -541,3 +546,59 @@ def optimizer_to(opt, device):
subparam.data = subparam.data.to(device) subparam.data = subparam.data.to(device)
if subparam._grad is not None: if subparam._grad is not None:
subparam._grad.data = subparam._grad.data.to(device) subparam._grad.data = subparam._grad.data.to(device)
#''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''
#''' AUDIO UTILS '''
#''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''
def find_audio_files(base_path, globs=['*.wav', '*.mp3', '*.ogg', '*.flac']):
path = pathlib.Path(base_path)
paths = []
for glob in globs:
paths.extend([str(f) for f in path.rglob(glob)])
return paths
def load_audio(audiopath, sampling_rate, raw_data=None):
if raw_data is not None:
# Assume the data is wav format. SciPy's reader can read raw WAV data from a BytesIO wrapper.
audio, lsr = load_wav_to_torch(raw_data)
else:
if audiopath[-4:] == '.wav':
audio, lsr = load_wav_to_torch(audiopath)
else:
audio, lsr = open_audio(audiopath)
audio = torch.FloatTensor(audio)
# Remove any channel data.
if len(audio.shape) > 1:
if audio.shape[0] < 5:
audio = audio[0]
else:
assert audio.shape[1] < 5
audio = audio[:, 0]
if lsr != sampling_rate:
audio = torchaudio.functional.resample(audio, lsr, sampling_rate)
# Check some assumptions about audio range. This should be automatically fixed in load_wav_to_torch, but might not be in some edge cases, where we should squawk.
# '2' is arbitrarily chosen since it seems like audio will often "overdrive" the [-1,1] bounds.
if torch.any(audio > 2) or not torch.any(audio < 0):
print(f"Error with {audiopath}. Max={audio.max()} min={audio.min()}")
audio.clip_(-1, 1)
return audio
def load_wav_to_torch(full_path):
sampling_rate, data = scipy.io.wavfile.read(full_path)
if data.dtype == np.int32:
norm_fix = 2 ** 31
elif data.dtype == np.int16:
norm_fix = 2 ** 15
elif data.dtype == np.float16 or data.dtype == np.float32:
norm_fix = 1.
else:
raise NotImplemented(f"Provided data dtype not supported: {data.dtype}")
return (torch.FloatTensor(data.astype(np.float32)) / norm_fix, sampling_rate)