Add gpt_tts

This commit is contained in:
James Betker 2021-07-27 20:33:30 -06:00
parent 398185e109
commit dadc54795c
5 changed files with 274 additions and 12 deletions

View File

@ -3,11 +3,13 @@ import random
import numpy as np
import torch
import torch.utils.data
from tqdm import tqdm
import models.tacotron2.layers as layers
from models.tacotron2.taco_utils import load_wav_to_torch, load_filepaths_and_text
from models.tacotron2.text import text_to_sequence
from utils.util import opt_get
class TextMelLoader(torch.utils.data.Dataset):
@ -23,8 +25,8 @@ class TextMelLoader(torch.utils.data.Dataset):
self.max_wav_value = hparams.max_wav_value
self.sampling_rate = hparams.sampling_rate
self.load_mel_from_disk = hparams.load_mel_from_disk
self.return_wavs = hparams.return_wavs
self.input_sample_rate = hparams.input_sample_rate
self.return_wavs = opt_get(hparams, ['return_wavs'], False)
self.input_sample_rate = opt_get(hparams, ['input_sample_rate'], self.sampling_rate)
assert not (self.load_mel_from_disk and self.return_wavs)
self.stft = layers.TacotronSTFT(
hparams.filter_length, hparams.hop_length, hparams.win_length,
@ -134,10 +136,10 @@ if __name__ == '__main__':
'path': 'E:\\audio\\LJSpeech-1.1\\ljs_audio_text_train_filelist.txt',
'phase': 'train',
'n_workers': 0,
'batch_size': 2,
'return_wavs': True,
'input_sample_rate': 22050,
'sampling_rate': 8000
'batch_size': 16,
#'return_wavs': True,
#'input_sample_rate': 22050,
#'sampling_rate': 8000
}
from data import create_dataset, create_dataloader
@ -145,10 +147,10 @@ if __name__ == '__main__':
dl = create_dataloader(ds, params, collate_fn=c)
i = 0
m = []
for b in dl:
m.append(b)
i += 1
if i > 9999:
break
max_text = 0
max_mel = 0
for b in tqdm(dl):
max_mel = max(max_mel, b['padded_mel'].shape[2])
max_text = max(max_text, b['padded_text'].shape[1])
m=torch.stack(m)
print(m.mean(), m.std())

View File

View File

@ -0,0 +1,77 @@
import torch
import torch.nn as nn
import torch.nn.functional as F
from models.arch_util import ConvGnSilu
from models.tacotron2.taco_utils import get_mask_from_lengths
from models.tacotron2.text import symbols
from models.gpt_voice.min_gpt import GPT, GPTConfig
from trainer.networks import register_model
class GptTts(nn.Module):
def __init__(self):
super().__init__()
number_symbols = len(symbols)
model_dim = 512
max_symbols_per_phrase = 200
max_mel_frames = 900
mel_dim=80
self.text_embedding = nn.Embedding(number_symbols, model_dim)
self.mel_encoder = nn.Sequential(ConvGnSilu(mel_dim, model_dim//2, kernel_size=3, convnd=nn.Conv1d),
ConvGnSilu(model_dim//2, model_dim, kernel_size=3, stride=2, convnd=nn.Conv1d))
self.text_tags = nn.Parameter(torch.randn(1, 1, model_dim)/256.0)
self.audio_tags = nn.Parameter(torch.randn(1, 1, model_dim)/256.0)
self.gpt = GPT(GPTConfig(max_symbols_per_phrase+max_mel_frames//2, n_embd=model_dim, n_head=8))
self.gate_head = nn.Sequential(ConvGnSilu(model_dim, model_dim, kernel_size=5, convnd=nn.Conv1d),
nn.Upsample(scale_factor=2, mode='nearest'),
ConvGnSilu(model_dim, model_dim//2, kernel_size=5, convnd=nn.Conv1d),
nn.Conv1d(model_dim//2, 1, kernel_size=1))
self.mel_head = nn.Sequential(ConvGnSilu(model_dim, model_dim, kernel_size=5, convnd=nn.Conv1d),
nn.Upsample(scale_factor=2, mode='nearest'),
ConvGnSilu(model_dim, model_dim//2, kernel_size=5, convnd=nn.Conv1d),
ConvGnSilu(model_dim//2, model_dim//2, kernel_size=5, convnd=nn.Conv1d),
ConvGnSilu(model_dim//2, mel_dim, kernel_size=1, activation=False, norm=False, convnd=nn.Conv1d))
def forward(self, text_inputs, mel_targets, output_lengths):
# Pad mel_targets to be a multiple of 2
padded = mel_targets.shape[-1] % 2 != 0
if padded:
mel_targets = F.pad(mel_targets, (0,1))
text_emb = self.text_embedding(text_inputs)
text_emb = text_emb + self.text_tags
mel_emb = self.mel_encoder(mel_targets).permute(0,2,1)
mel_emb = mel_emb + self.audio_tags
emb = torch.cat([text_emb, mel_emb], dim=1)
enc = self.gpt(emb)
mel_portion = enc[:, text_emb.shape[1]:].permute(0,2,1)
gates = self.gate_head(mel_portion).squeeze(1)
mel_pred = self.mel_head(mel_portion)
# Mask portions of output which we don't need to predict.
mask = ~get_mask_from_lengths(output_lengths, mel_pred.shape[-1])
mask = mask.unsqueeze(1).repeat(1, mel_pred.shape[1], 1)
mel_pred.data.masked_fill_(mask, 0)
gates.data.masked_fill_(mask[:, 0, :], 1e3)
if padded:
mel_pred = mel_pred[:, :, :-1]
gates = gates[:, :-1]
return mel_pred, gates
@register_model
def register_gpt_tts(opt_net, opt):
return GptTts()
if __name__ == '__main__':
gpt = GptTts()
m, g = gpt(torch.randint(high=24, size=(2,60)),
torch.randn(2,80,747),
torch.tensor([600,747]))
print(m.shape)
print(g.shape)

View File

@ -0,0 +1,183 @@
"""
GPT model:
- the initial stem consists of a combination of token encoding and a positional encoding
- the meat of it is a uniform sequence of Transformer blocks
- each Transformer is a sequential combination of a 1-hidden-layer MLP block and a self-attention block
- all blocks feed into a central residual pathway similar to resnets
- the final decoder is a linear projection into a vanilla Softmax classifier
Original author: karpathy@, https://github.com/karpathy/minGPT
"""
import math
import logging
import torch
import torch.nn as nn
from torch.nn import functional as F
logger = logging.getLogger(__name__)
class GPTConfig:
""" base GPT config, params common to all GPT versions """
embd_pdrop = 0.1
resid_pdrop = 0.1
attn_pdrop = 0.1
def __init__(self, block_size, n_layer=12, n_head=12, n_embd=768, **kwargs):
self.block_size = block_size
self.n_layer = n_layer
self.n_head = n_head
self.n_embd = n_embd
for k,v in kwargs.items():
setattr(self, k, v)
class CausalSelfAttention(nn.Module):
"""
A vanilla multi-head masked self-attention layer with a projection at the end.
It is possible to use torch.nn.MultiheadAttention here but I am including an
explicit implementation here to show that there is nothing too scary here.
"""
def __init__(self, config):
super().__init__()
assert config.n_embd % config.n_head == 0
# key, query, value projections for all heads
self.key = nn.Linear(config.n_embd, config.n_embd)
self.query = nn.Linear(config.n_embd, config.n_embd)
self.value = nn.Linear(config.n_embd, config.n_embd)
# regularization
self.attn_drop = nn.Dropout(config.attn_pdrop)
self.resid_drop = nn.Dropout(config.resid_pdrop)
# output projection
self.proj = nn.Linear(config.n_embd, config.n_embd)
# causal mask to ensure that attention is only applied to the left in the input sequence
self.register_buffer("mask", torch.tril(torch.ones(config.block_size, config.block_size))
.view(1, 1, config.block_size, config.block_size))
self.n_head = config.n_head
def forward(self, x, layer_past=None):
B, T, C = x.size()
# calculate query, key, values for all heads in batch and move head forward to be the batch dim
k = self.key(x).view(B, T, self.n_head, C // self.n_head).transpose(1, 2) # (B, nh, T, hs)
q = self.query(x).view(B, T, self.n_head, C // self.n_head).transpose(1, 2) # (B, nh, T, hs)
v = self.value(x).view(B, T, self.n_head, C // self.n_head).transpose(1, 2) # (B, nh, T, hs)
# causal self-attention; Self-attend: (B, nh, T, hs) x (B, nh, hs, T) -> (B, nh, T, T)
att = (q @ k.transpose(-2, -1)) * (1.0 / math.sqrt(k.size(-1)))
att = att.masked_fill(self.mask[:,:,:T,:T] == 0, float('-inf'))
att = F.softmax(att, dim=-1)
att = self.attn_drop(att)
y = att @ v # (B, nh, T, T) x (B, nh, T, hs) -> (B, nh, T, hs)
y = y.transpose(1, 2).contiguous().view(B, T, C) # re-assemble all head outputs side by side
# output projection
y = self.resid_drop(self.proj(y))
return y
class Block(nn.Module):
""" an unassuming Transformer block """
def __init__(self, config):
super().__init__()
self.ln1 = nn.LayerNorm(config.n_embd)
self.ln2 = nn.LayerNorm(config.n_embd)
self.attn = CausalSelfAttention(config)
self.mlp = nn.Sequential(
nn.Linear(config.n_embd, 4 * config.n_embd),
nn.GELU(),
nn.Linear(4 * config.n_embd, config.n_embd),
nn.Dropout(config.resid_pdrop),
)
def forward(self, x):
x = x + self.attn(self.ln1(x))
x = x + self.mlp(self.ln2(x))
return x
class GPT(nn.Module):
""" the full GPT language model, with a context size of block_size """
def __init__(self, config):
super().__init__()
# input embedding stem
self.pos_emb = nn.Parameter(torch.zeros(1, config.block_size, config.n_embd))
self.drop = nn.Dropout(config.embd_pdrop)
# transformer
self.blocks = nn.Sequential(*[Block(config) for _ in range(config.n_layer)])
self.block_size = config.block_size
self.apply(self._init_weights)
logger.info("number of parameters: %e", sum(p.numel() for p in self.parameters()))
def get_block_size(self):
return self.block_size
def _init_weights(self, module):
if isinstance(module, (nn.Linear, nn.Embedding)):
module.weight.data.normal_(mean=0.0, std=0.02)
if isinstance(module, nn.Linear) and module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, nn.LayerNorm):
module.bias.data.zero_()
module.weight.data.fill_(1.0)
def configure_optimizers(self, train_config):
"""
This long function is unfortunately doing something very simple and is being very defensive:
We are separating out all parameters of the model into two buckets: those that will experience
weight decay for regularization and those that won't (biases, and layernorm/embedding weights).
We are then returning the PyTorch optimizer object.
"""
# separate out all parameters to those that will and won't experience regularizing weight decay
decay = set()
no_decay = set()
whitelist_weight_modules = (torch.nn.Linear, )
blacklist_weight_modules = (torch.nn.LayerNorm, torch.nn.Embedding)
for mn, m in self.named_modules():
for pn, p in m.named_parameters():
fpn = '%s.%s' % (mn, pn) if mn else pn # full param name
if pn.endswith('bias'):
# all biases will not be decayed
no_decay.add(fpn)
elif pn.endswith('weight') and isinstance(m, whitelist_weight_modules):
# weights of whitelist modules will be weight decayed
decay.add(fpn)
elif pn.endswith('weight') and isinstance(m, blacklist_weight_modules):
# weights of blacklist modules will NOT be weight decayed
no_decay.add(fpn)
# special case the position embedding parameter in the root GPT module as not decayed
no_decay.add('pos_emb')
# validate that we considered every parameter
param_dict = {pn: p for pn, p in self.named_parameters()}
inter_params = decay & no_decay
union_params = decay | no_decay
assert len(inter_params) == 0, "parameters %s made it into both decay/no_decay sets!" % (str(inter_params), )
assert len(param_dict.keys() - union_params) == 0, "parameters %s were not separated into either decay/no_decay set!" \
% (str(param_dict.keys() - union_params), )
# create the pytorch optimizer object
optim_groups = [
{"params": [param_dict[pn] for pn in sorted(list(decay))], "weight_decay": train_config.weight_decay},
{"params": [param_dict[pn] for pn in sorted(list(no_decay))], "weight_decay": 0.0},
]
optimizer = torch.optim.AdamW(optim_groups, lr=train_config.learning_rate, betas=train_config.betas)
return optimizer
def forward(self, embeddings):
b, t, c = embeddings.size()
assert t <= self.block_size, "Cannot forward, model block size is exhausted."
# forward the GPT model
position_embeddings = self.pos_emb[:, :t, :] # each position maps to a (learnable) vector
x = self.drop(embeddings + position_embeddings)
x = self.blocks(x)
return x

View File

@ -300,7 +300,7 @@ class Trainer:
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('-opt', type=str, help='Path to option YAML file.', default='../options/train_wave_tacotron_diffusion_lj.yml')
parser.add_argument('-opt', type=str, help='Path to option YAML file.', default='../options/train_gpt_tts_lj.yml')
parser.add_argument('--launcher', choices=['none', 'pytorch'], default='none', help='job launcher')
parser.add_argument('--local_rank', type=int, default=0)
args = parser.parse_args()