Add bypass to ChainedEmbeddingGen
This commit is contained in:
parent
d8c6a4bbb8
commit
dca5cddb3b
|
@ -1,4 +1,7 @@
|
|||
import os
|
||||
|
||||
import torch
|
||||
import torchvision
|
||||
from torch import nn
|
||||
|
||||
from models.archs.SPSR_arch import ImageGradientNoPadding
|
||||
|
@ -46,7 +49,7 @@ class BasicEmbeddingPyramid(nn.Module):
|
|||
for i in range(2):
|
||||
p = self.expanders[i](p, identities[-(i+1)])
|
||||
x = self.final_process(torch.cat([x, p], dim=1))
|
||||
return x
|
||||
return x, p
|
||||
|
||||
|
||||
class ChainedEmbeddingGen(nn.Module):
|
||||
|
@ -61,7 +64,7 @@ class ChainedEmbeddingGen(nn.Module):
|
|||
fea = self.initial_conv(x)
|
||||
emb = checkpoint(self.spine, fea)
|
||||
for block in self.blocks:
|
||||
fea = fea + checkpoint(block, fea, *emb)
|
||||
fea = fea + checkpoint(block, fea, *emb)[0]
|
||||
return checkpoint(self.upsample, fea),
|
||||
|
||||
|
||||
|
@ -100,7 +103,7 @@ class ChainedEmbeddingGenWithStructure(nn.Module):
|
|||
emb = checkpoint(self.spine, fea)
|
||||
grad = fea
|
||||
for i, block in enumerate(self.blocks):
|
||||
fea = fea + checkpoint(block, fea, *emb)
|
||||
fea = fea + checkpoint(block, fea, *emb)[0]
|
||||
if i < 3:
|
||||
structure_br = checkpoint(self.structure_joins[i], grad, fea)
|
||||
grad = grad + checkpoint(self.structure_blocks[i], structure_br)
|
||||
|
@ -109,3 +112,76 @@ class ChainedEmbeddingGenWithStructure(nn.Module):
|
|||
|
||||
def get_debug_values(self, step, net_name):
|
||||
return { 'ref_join_std': self.ref_join_std }
|
||||
|
||||
|
||||
# This is a structural block that learns to mute regions of a residual transformation given a signal.
|
||||
class OptionalPassthroughBlock(nn.Module):
|
||||
def __init__(self, nf, initial_bias=10):
|
||||
super(OptionalPassthroughBlock, self).__init__()
|
||||
self.switch_process = nn.Sequential(ConvGnLelu(nf, nf // 2, 1, activation=False, norm=False, bias=False),
|
||||
ConvGnLelu(nf // 2, nf // 4, 1, activation=False, norm=False, bias=False),
|
||||
ConvGnLelu(nf // 4, 1, 1, activation=False, norm=False, bias=False))
|
||||
self.bias = nn.Parameter(torch.tensor(initial_bias, dtype=torch.float), requires_grad=True)
|
||||
self.activation = nn.Sigmoid()
|
||||
|
||||
def forward(self, x, switch_signal):
|
||||
switch = self.switch_process(switch_signal)
|
||||
bypass_map = self.activation(self.bias + switch)
|
||||
return x * bypass_map, bypass_map
|
||||
|
||||
|
||||
class StructuredChainedEmbeddingGenWithBypass(nn.Module):
|
||||
def __init__(self, depth=10, recurrent=False, recurrent_nf=3, recurrent_stride=2, bypass_bias=10):
|
||||
super(StructuredChainedEmbeddingGenWithBypass, self).__init__()
|
||||
self.recurrent = recurrent
|
||||
self.initial_conv = ConvGnLelu(3, 64, kernel_size=7, bias=True, norm=False, activation=False)
|
||||
if recurrent:
|
||||
self.recurrent_nf = recurrent_nf
|
||||
self.recurrent_stride = recurrent_stride
|
||||
self.recurrent_process = ConvGnLelu(recurrent_nf, 64, kernel_size=3, stride=recurrent_stride, norm=False, bias=True, activation=False)
|
||||
self.recurrent_join = ReferenceJoinBlock(64, residual_weight_init_factor=.01, final_norm=False, kernel_size=1, depth=3, join=False)
|
||||
self.spine = SpineNet(arch='49', output_level=[3, 4], double_reduce_early=False)
|
||||
self.blocks = nn.ModuleList([BasicEmbeddingPyramid() for i in range(depth)])
|
||||
self.bypasses = nn.ModuleList([OptionalPassthroughBlock(64, initial_bias=bypass_bias) for i in range(depth)])
|
||||
self.structure_joins = nn.ModuleList([ConjoinBlock(64) for i in range(3)])
|
||||
self.structure_blocks = nn.ModuleList([ConvGnLelu(64, 64, kernel_size=3, bias=False, norm=False, activation=False, weight_init_factor=.1) for i in range(3)])
|
||||
self.structure_upsample = FinalUpsampleBlock2x(64)
|
||||
self.grad_extract = ImageGradientNoPadding()
|
||||
self.upsample = FinalUpsampleBlock2x(64)
|
||||
self.ref_join_std = 0
|
||||
self.bypass_maps = []
|
||||
|
||||
def forward(self, x, recurrent=None):
|
||||
fea = self.initial_conv(x)
|
||||
if self.recurrent:
|
||||
if recurrent is None:
|
||||
if self.recurrent_nf == 3:
|
||||
recurrent = torch.zeros_like(x)
|
||||
if self.recurrent_stride != 1:
|
||||
recurrent = torch.nn.functional.interpolate(recurrent, scale_factor=self.recurrent_stride, mode='nearest')
|
||||
else:
|
||||
recurrent = torch.zeros_like(fea)
|
||||
rec = self.recurrent_process(recurrent)
|
||||
fea, recstd = self.recurrent_join(fea, rec)
|
||||
self.ref_join_std = recstd.item()
|
||||
emb = checkpoint(self.spine, fea)
|
||||
grad = fea
|
||||
self.bypass_maps = []
|
||||
for i, block in enumerate(self.blocks):
|
||||
residual, context = checkpoint(block, fea, *emb)
|
||||
residual, bypass_map = checkpoint(self.bypasses[i], residual, context)
|
||||
fea = fea + residual
|
||||
self.bypass_maps.append(bypass_map.detach())
|
||||
if i < 3:
|
||||
structure_br = checkpoint(self.structure_joins[i], grad, fea)
|
||||
grad = grad + checkpoint(self.structure_blocks[i], structure_br)
|
||||
out = checkpoint(self.upsample, fea)
|
||||
return out, self.grad_extract(checkpoint(self.structure_upsample, grad)), self.grad_extract(out), fea
|
||||
|
||||
def visual_dbg(self, step, path):
|
||||
for i, bm in enumerate(self.bypass_maps):
|
||||
torchvision.utils.save_image(bm.cpu(), os.path.join(path, "%i_bypass_%i.png" % (step, i+1)))
|
||||
|
||||
def get_debug_values(self, step, net_name):
|
||||
biases = [b.bias.item() for b in self.bypasses]
|
||||
return { 'ref_join_std': self.ref_join_std, 'bypass_biases': sum(biases) / len(biases) }
|
||||
|
|
|
@ -18,7 +18,8 @@ import models.archs.discriminator_vgg_arch as SRGAN_arch
|
|||
import models.archs.feature_arch as feature_arch
|
||||
import models.archs.panet.panet as panet
|
||||
import models.archs.rcan as rcan
|
||||
from models.archs.ChainedEmbeddingGen import ChainedEmbeddingGen, ChainedEmbeddingGenWithStructure
|
||||
from models.archs.ChainedEmbeddingGen import ChainedEmbeddingGen, ChainedEmbeddingGenWithStructure, \
|
||||
StructuredChainedEmbeddingGenWithBypass
|
||||
|
||||
logger = logging.getLogger('base')
|
||||
|
||||
|
@ -130,6 +131,12 @@ def define_G(opt, net_key='network_G', scale=None):
|
|||
recnf = opt_net['recurrent_nf'] if 'recurrent_nf' in opt_net.keys() else 3
|
||||
recstd = opt_net['recurrent_stride'] if 'recurrent_stride' in opt_net.keys() else 2
|
||||
netG = ChainedEmbeddingGenWithStructure(depth=opt_net['depth'], recurrent=rec, recurrent_nf=recnf, recurrent_stride=recstd)
|
||||
elif which_model == 'chained_gen_structured_with_bypass':
|
||||
rec = opt_net['recurrent'] if 'recurrent' in opt_net.keys() else False
|
||||
recnf = opt_net['recurrent_nf'] if 'recurrent_nf' in opt_net.keys() else 3
|
||||
recstd = opt_net['recurrent_stride'] if 'recurrent_stride' in opt_net.keys() else 2
|
||||
bypass_bias = opt_net['bypass_bias'] if 'bypass_bias' in opt_net.keys() else 0
|
||||
netG = StructuredChainedEmbeddingGenWithBypass(depth=opt_net['depth'], recurrent=rec, recurrent_nf=recnf, recurrent_stride=recstd, bypass_bias=bypass_bias)
|
||||
elif which_model == "flownet2":
|
||||
from models.flownet2.models import FlowNet2
|
||||
ld = torch.load(opt_net['load_path'])
|
||||
|
|
Loading…
Reference in New Issue
Block a user