Fix gpt_asr bug. Initial implementation of beam search

This commit is contained in:
James Betker 2021-08-13 22:47:00 -06:00
parent 72622b4d61
commit e1bdd3f7c7

View File

@ -52,7 +52,7 @@ class GptAsr(nn.Module):
MAX_SYMBOLS_PER_PHRASE = 200 MAX_SYMBOLS_PER_PHRASE = 200
MAX_MEL_FRAMES = 1000 // 4 MAX_MEL_FRAMES = 1000 // 4
NUMBER_SYMBOLS = len(symbols) NUMBER_SYMBOLS = len(symbols)
NUMBER_TEXT_TOKENS = NUMBER_SYMBOLS NUMBER_TEXT_TOKENS = NUMBER_SYMBOLS+1
def __init__(self, layers=8, model_dim=512, heads=8): def __init__(self, layers=8, model_dim=512, heads=8):
super().__init__() super().__init__()
@ -61,15 +61,17 @@ class GptAsr(nn.Module):
self.max_mel_frames = self.MAX_MEL_FRAMES self.max_mel_frames = self.MAX_MEL_FRAMES
self.text_embedding = nn.Embedding(self.NUMBER_TEXT_TOKENS, model_dim) self.text_embedding = nn.Embedding(self.NUMBER_TEXT_TOKENS, model_dim)
self.mel_encoder = MelEncoder(model_dim) self.mel_encoder = MelEncoder(model_dim)
self.text_pos_embedding = nn.Embedding(self.MAX_SYMBOLS_PER_PHRASE, model_dim) self.text_pos_embedding = nn.Embedding(self.MAX_SYMBOLS_PER_PHRASE+1, model_dim)
self.mel_pos_embedding = nn.Embedding(self.MAX_MEL_FRAMES, model_dim) self.mel_pos_embedding = nn.Embedding(self.MAX_MEL_FRAMES, model_dim)
self.gpt = Transformer(dim=model_dim, depth=layers, seq_len=1+self.MAX_SYMBOLS_PER_PHRASE+self.MAX_MEL_FRAMES, heads=heads, self.gpt = Transformer(dim=model_dim, depth=layers, seq_len=2+self.MAX_SYMBOLS_PER_PHRASE+self.MAX_MEL_FRAMES, heads=heads,
attn_dropout=.1, ff_dropout=.1, non_causal_sequence_partition=self.MAX_MEL_FRAMES) attn_dropout=.1, ff_dropout=.1, non_causal_sequence_partition=self.MAX_MEL_FRAMES)
self.final_norm = nn.LayerNorm(model_dim) self.final_norm = nn.LayerNorm(model_dim)
self.text_head = nn.Linear(model_dim, self.NUMBER_TEXT_TOKENS) self.text_head = nn.Linear(model_dim, self.NUMBER_TEXT_TOKENS)
def forward(self, mel_inputs, text_targets): def forward(self, mel_inputs, text_targets):
# Pad front and back. Pad at front is the "START" token.
text_targets = F.pad(text_targets, (1,0), value=self.NUMBER_SYMBOLS)
text_targets = F.pad(text_targets, (0, self.MAX_SYMBOLS_PER_PHRASE-text_targets.shape[1])) text_targets = F.pad(text_targets, (0, self.MAX_SYMBOLS_PER_PHRASE-text_targets.shape[1]))
text_emb = self.text_embedding(text_targets) text_emb = self.text_embedding(text_targets)
text_emb = text_emb + self.text_pos_embedding(torch.arange(text_emb.shape[1], device=text_targets.device)) text_emb = text_emb + self.text_pos_embedding(torch.arange(text_emb.shape[1], device=text_targets.device))
@ -85,10 +87,71 @@ class GptAsr(nn.Module):
text_logits = self.final_norm(enc[:, self.MAX_MEL_FRAMES:]) text_logits = self.final_norm(enc[:, self.MAX_MEL_FRAMES:])
text_logits = self.text_head(text_logits) text_logits = self.text_head(text_logits)
text_logits = text_logits.permute(0,2,1) text_logits = text_logits.permute(0,2,1)
loss_text = F.cross_entropy(text_logits[:,:,1:], text_targets[:,:-1].long()) loss_text = F.cross_entropy(text_logits[:,:,:-1], text_targets[:,1:].long())
return loss_text.mean() return loss_text.mean()
def inference_beam_topk(self, mel):
def topk_sampler(distribution, k):
return torch.topk(distribution, k=k, dim=-1)
return self.inference_beam(mel, topk_sampler)
def inference_beam_sampled(self, mel):
def multinomial_sampler(distribution, k):
indices = torch.multinomial(distribution, num_samples=k, replacement=False)
values = torch.gather(distribution, dim=1, index=indices)
class container:
def __init__(self, i, v):
self.indices = i
self.values = v
return container(indices, values)
return self.inference_beam(mel, multinomial_sampler)
def inference_beam(self, mel_inputs, sampler_fn):
beam_width = 16
temperature = .8
b, _, s = mel_inputs.shape
assert b == 1 # Beam search only works on batches of one.
mel_emb = self.mel_encoder(mel_inputs)
mel_emb = F.pad(mel_emb, (0, self.MAX_MEL_FRAMES-mel_emb.shape[-1]))
mel_emb = mel_emb.permute(0,2,1).contiguous()
mel_emb = mel_emb + self.mel_pos_embedding(torch.arange(mel_emb.shape[1], device=mel_emb.device))
text_seq = torch.full((b,1), fill_value=self.NUMBER_SYMBOLS, device=mel_emb.device)
probabilities = torch.ones((b,), device=mel_emb.device)
while len(text_seq) < self.max_mel_frames:
text_emb = self.text_embedding(text_seq)
text_emb = text_emb + self.text_pos_embedding(torch.arange(text_emb.shape[1], device=mel_emb.device))
if text_emb.shape[0] != mel_emb.shape[0]:
mel_emb = mel_emb.repeat(text_emb.shape[0], 1, 1)
emb = torch.cat([text_emb, mel_emb], dim=1)
enc = self.gpt(emb)
mel_logits = self.final_norm(enc[:, text_emb.shape[1]:])
mel_logits = self.mel_head(mel_logits)
topk = sampler_fn(F.softmax(temperature * mel_logits[:, -1], dim=-1), k=beam_width)
probabilities = (probabilities.repeat_interleave(beam_width, dim=0) * topk.values.flatten())
probabilities, sort_indices = torch.sort(probabilities, descending=True)
probabilities = probabilities[:beam_width]
text_seq = text_seq.repeat_interleave(beam_width, dim=0)
codes = topk.indices.flatten()
text_seq = torch.cat([text_seq, codes.unsqueeze(1)], dim=1)
text_seq = text_seq[sort_indices]
text_seq = text_seq[:beam_width]
if torch.all(torch.any(text_seq == self.MEL_STOP_TOKEN, dim=1)):
break
if text_seq.shape[1] >= self.max_mel_frames:
print("Warning! Encountered frame limit before a stop token. Output is likely wrong.")
# Format mel_seq so that the DVAE can actually use it (it is a two-tiered DVAE)
text_seq = text_seq[0, 1:-1].unsqueeze(0) # Pick most likely outcome, remove first and last tokens, which were artificially added for GPT
text_seq = text_seq * (text_seq < 512) # The DVAE doesn't understand BOS/EOS/PAD tokens.
return text_seq
@register_model @register_model
def register_gpt_asr(opt_net, opt): def register_gpt_asr(opt_net, opt):