Apply dropout to gpt_tts, get rid of min_gpt implementation
This commit is contained in:
parent
74342b860b
commit
e1ce4671e4
|
@ -29,8 +29,8 @@ class GptTts(nn.Module):
|
|||
self.mel_embedding = nn.Embedding(self.MEL_DICTIONARY_SIZE, model_dim)
|
||||
self.text_pos_embedding = nn.Embedding(self.MAX_SYMBOLS_PER_PHRASE, model_dim)
|
||||
self.mel_pos_embedding = nn.Embedding(max_mel_frames, model_dim)
|
||||
#self.gpt = GPT(GPTConfig(1+self.MAX_SYMBOLS_PER_PHRASE+max_mel_frames, n_layer=8, n_embd=model_dim, n_head=8), do_pos_emb=False)
|
||||
self.gpt = Transformer(dim=model_dim, depth=layers, seq_len=1+self.MAX_SYMBOLS_PER_PHRASE+max_mel_frames, heads=heads)
|
||||
self.gpt = Transformer(dim=model_dim, depth=layers, seq_len=1+self.MAX_SYMBOLS_PER_PHRASE+max_mel_frames, heads=heads,
|
||||
attn_dropout=.1, ff_dropout=.1)
|
||||
|
||||
self.final_norm = nn.LayerNorm(model_dim)
|
||||
self.text_head = nn.Linear(model_dim, self.NUMBER_TEXT_TOKENS)
|
||||
|
|
|
@ -1,189 +0,0 @@
|
|||
"""
|
||||
GPT model:
|
||||
- the initial stem consists of a combination of token encoding and a positional encoding
|
||||
- the meat of it is a uniform sequence of Transformer blocks
|
||||
- each Transformer is a sequential combination of a 1-hidden-layer MLP block and a self-attention block
|
||||
- all blocks feed into a central residual pathway similar to resnets
|
||||
- the final decoder is a linear projection into a vanilla Softmax classifier
|
||||
|
||||
Original author: karpathy@, https://github.com/karpathy/minGPT
|
||||
"""
|
||||
|
||||
import math
|
||||
import logging
|
||||
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
from torch.nn import functional as F
|
||||
|
||||
from utils.util import checkpoint, sequential_checkpoint
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
class GPTConfig:
|
||||
""" base GPT config, params common to all GPT versions """
|
||||
embd_pdrop = 0.1
|
||||
resid_pdrop = 0.1
|
||||
attn_pdrop = 0.1
|
||||
|
||||
def __init__(self, block_size, n_layer=12, n_head=12, n_embd=768, **kwargs):
|
||||
self.block_size = block_size
|
||||
self.n_layer = n_layer
|
||||
self.n_head = n_head
|
||||
self.n_embd = n_embd
|
||||
for k,v in kwargs.items():
|
||||
setattr(self, k, v)
|
||||
|
||||
class CausalSelfAttention(nn.Module):
|
||||
"""
|
||||
A vanilla multi-head masked self-attention layer with a projection at the end.
|
||||
It is possible to use torch.nn.MultiheadAttention here but I am including an
|
||||
explicit implementation here to show that there is nothing too scary here.
|
||||
"""
|
||||
|
||||
def __init__(self, config):
|
||||
super().__init__()
|
||||
assert config.n_embd % config.n_head == 0
|
||||
# key, query, value projections for all heads
|
||||
self.key = nn.Linear(config.n_embd, config.n_embd)
|
||||
self.query = nn.Linear(config.n_embd, config.n_embd)
|
||||
self.value = nn.Linear(config.n_embd, config.n_embd)
|
||||
# regularization
|
||||
self.attn_drop = nn.Dropout(config.attn_pdrop)
|
||||
self.resid_drop = nn.Dropout(config.resid_pdrop)
|
||||
# output projection
|
||||
self.proj = nn.Linear(config.n_embd, config.n_embd)
|
||||
# causal mask to ensure that attention is only applied to the left in the input sequence
|
||||
self.register_buffer("mask", torch.tril(torch.ones(config.block_size, config.block_size))
|
||||
.view(1, 1, config.block_size, config.block_size))
|
||||
self.n_head = config.n_head
|
||||
|
||||
def forward(self, x):
|
||||
B, T, C = x.size()
|
||||
|
||||
# calculate query, key, values for all heads in batch and move head forward to be the batch dim
|
||||
k = self.key(x).view(B, T, self.n_head, C // self.n_head).transpose(1, 2) # (B, nh, T, hs)
|
||||
q = self.query(x).view(B, T, self.n_head, C // self.n_head).transpose(1, 2) # (B, nh, T, hs)
|
||||
v = self.value(x).view(B, T, self.n_head, C // self.n_head).transpose(1, 2) # (B, nh, T, hs)
|
||||
|
||||
# causal self-attention; Self-attend: (B, nh, T, hs) x (B, nh, hs, T) -> (B, nh, T, T)
|
||||
att = (q @ k.transpose(-2, -1)) * (1.0 / math.sqrt(k.size(-1)))
|
||||
att = att.masked_fill(self.mask[:,:,:T,:T] == 0, float('-inf'))
|
||||
att = F.softmax(att, dim=-1)
|
||||
att = self.attn_drop(att)
|
||||
y = att @ v # (B, nh, T, T) x (B, nh, T, hs) -> (B, nh, T, hs)
|
||||
y = y.transpose(1, 2).contiguous().view(B, T, C) # re-assemble all head outputs side by side
|
||||
|
||||
# output projection
|
||||
y = self.resid_drop(self.proj(y))
|
||||
return y
|
||||
|
||||
class Block(nn.Module):
|
||||
""" an unassuming Transformer block """
|
||||
|
||||
def __init__(self, config):
|
||||
super().__init__()
|
||||
self.ln1 = nn.LayerNorm(config.n_embd)
|
||||
self.ln2 = nn.LayerNorm(config.n_embd)
|
||||
self.attn = CausalSelfAttention(config)
|
||||
self.mlp = nn.Sequential(
|
||||
nn.Linear(config.n_embd, 4 * config.n_embd),
|
||||
nn.GELU(),
|
||||
nn.Linear(4 * config.n_embd, config.n_embd),
|
||||
nn.Dropout(config.resid_pdrop),
|
||||
)
|
||||
|
||||
def forward(self, x):
|
||||
x = x + self.attn(self.ln1(x))
|
||||
x = x + self.mlp(self.ln2(x))
|
||||
return x
|
||||
|
||||
class GPT(nn.Module):
|
||||
""" the full GPT language model, with a context size of block_size """
|
||||
|
||||
def __init__(self, config, do_pos_emb=True):
|
||||
super().__init__()
|
||||
|
||||
# input embedding stem
|
||||
if do_pos_emb:
|
||||
self.pos_emb = nn.Parameter(torch.zeros(1, config.block_size, config.n_embd))
|
||||
else:
|
||||
self.pos_emb = None
|
||||
self.drop = nn.Dropout(config.embd_pdrop)
|
||||
# transformer
|
||||
self.blocks = nn.Sequential(*[Block(config) for _ in range(config.n_layer)])
|
||||
|
||||
self.block_size = config.block_size
|
||||
self.apply(self._init_weights)
|
||||
|
||||
logger.info("number of parameters: %e", sum(p.numel() for p in self.parameters()))
|
||||
|
||||
def get_block_size(self):
|
||||
return self.block_size
|
||||
|
||||
def _init_weights(self, module):
|
||||
if isinstance(module, (nn.Linear, nn.Embedding)):
|
||||
module.weight.data.normal_(mean=0.0, std=0.02)
|
||||
if isinstance(module, nn.Linear) and module.bias is not None:
|
||||
module.bias.data.zero_()
|
||||
elif isinstance(module, nn.LayerNorm):
|
||||
module.bias.data.zero_()
|
||||
module.weight.data.fill_(1.0)
|
||||
|
||||
def configure_optimizers(self, train_config):
|
||||
"""
|
||||
This long function is unfortunately doing something very simple and is being very defensive:
|
||||
We are separating out all parameters of the model into two buckets: those that will experience
|
||||
weight decay for regularization and those that won't (biases, and layernorm/embedding weights).
|
||||
We are then returning the PyTorch optimizer object.
|
||||
"""
|
||||
|
||||
# separate out all parameters to those that will and won't experience regularizing weight decay
|
||||
decay = set()
|
||||
no_decay = set()
|
||||
whitelist_weight_modules = (torch.nn.Linear, )
|
||||
blacklist_weight_modules = (torch.nn.LayerNorm, torch.nn.Embedding)
|
||||
for mn, m in self.named_modules():
|
||||
for pn, p in m.named_parameters():
|
||||
fpn = '%s.%s' % (mn, pn) if mn else pn # full param name
|
||||
|
||||
if pn.endswith('bias'):
|
||||
# all biases will not be decayed
|
||||
no_decay.add(fpn)
|
||||
elif pn.endswith('weight') and isinstance(m, whitelist_weight_modules):
|
||||
# weights of whitelist modules will be weight decayed
|
||||
decay.add(fpn)
|
||||
elif pn.endswith('weight') and isinstance(m, blacklist_weight_modules):
|
||||
# weights of blacklist modules will NOT be weight decayed
|
||||
no_decay.add(fpn)
|
||||
|
||||
# special case the position embedding parameter in the root GPT module as not decayed
|
||||
no_decay.add('pos_emb')
|
||||
|
||||
# validate that we considered every parameter
|
||||
param_dict = {pn: p for pn, p in self.named_parameters()}
|
||||
inter_params = decay & no_decay
|
||||
union_params = decay | no_decay
|
||||
assert len(inter_params) == 0, "parameters %s made it into both decay/no_decay sets!" % (str(inter_params), )
|
||||
assert len(param_dict.keys() - union_params) == 0, "parameters %s were not separated into either decay/no_decay set!" \
|
||||
% (str(param_dict.keys() - union_params), )
|
||||
|
||||
# create the pytorch optimizer object
|
||||
optim_groups = [
|
||||
{"params": [param_dict[pn] for pn in sorted(list(decay))], "weight_decay": train_config.weight_decay},
|
||||
{"params": [param_dict[pn] for pn in sorted(list(no_decay))], "weight_decay": 0.0},
|
||||
]
|
||||
optimizer = torch.optim.AdamW(optim_groups, lr=train_config.learning_rate, betas=train_config.betas)
|
||||
return optimizer
|
||||
|
||||
def forward(self, embeddings):
|
||||
b, t, c = embeddings.size()
|
||||
assert t <= self.block_size, "Cannot forward, model block size is exhausted."
|
||||
|
||||
# forward the GPT model
|
||||
if self.pos_emb is not None:
|
||||
embeddings = embeddings + self.pos_emb[:, :t, :] # each position maps to a (learnable) vector
|
||||
x = self.drop(embeddings)
|
||||
x = sequential_checkpoint(self.blocks, 4, x)
|
||||
|
||||
return x
|
Loading…
Reference in New Issue
Block a user