Add stepped rrdb

This commit is contained in:
James Betker 2020-12-01 11:11:15 -07:00
parent 2e0bbda640
commit e343722d37

View File

@ -2,8 +2,8 @@ import torch.nn as nn
import torch.nn.functional as F import torch.nn.functional as F
from models.archs.RRDBNet_arch import RRDB from models.archs.RRDBNet_arch import RRDB
from models.archs.arch_util import make_layer, default_init_weights, ConvGnSilu, ConvGnLelu from models.archs.arch_util import make_layer, default_init_weights, ConvGnSilu, ConvGnLelu, PixelUnshuffle
from utils.util import checkpoint from utils.util import checkpoint, sequential_checkpoint
class MultiLevelRRDB(nn.Module): class MultiLevelRRDB(nn.Module):
@ -81,3 +81,126 @@ class MultiResRRDBNet(nn.Module):
def visual_dbg(self, step, path): def visual_dbg(self, step, path):
pass pass
class SteppedResRRDBNet(nn.Module):
def __init__(self,
in_channels,
out_channels,
mid_channels=64,
l1_blocks=3,
l2_blocks=3,
growth_channels=32,
scale=4,
):
super().__init__()
self.scale = scale
self.in_channels = in_channels
self.conv_first = nn.Conv2d(in_channels, mid_channels, 7, stride=2, padding=3)
self.conv_second = nn.Conv2d(mid_channels, mid_channels*2, 3, stride=2, padding=1)
self.l1_blocks = nn.Sequential(*[RRDB(mid_channels*2, growth_channels*2) for _ in range(l1_blocks)])
self.l1_upsample_conv = nn.Conv2d(mid_channels*2, mid_channels, 3, stride=1, padding=1)
self.l2_blocks = nn.Sequential(*[RRDB(mid_channels, growth_channels, 2) for _ in range(l2_blocks)])
self.conv_body = nn.Conv2d(mid_channels, mid_channels, 3, 1, 1)
# upsample
self.conv_up1 = nn.Conv2d(mid_channels, mid_channels, 3, 1, 1)
self.conv_up2 = nn.Conv2d(mid_channels, mid_channels, 3, 1, 1)
self.conv_hr = nn.Conv2d(mid_channels, mid_channels, 3, 1, 1)
self.conv_last = nn.Conv2d(mid_channels, out_channels, 3, 1, 1)
self.lrelu = nn.LeakyReLU(negative_slope=0.2, inplace=True)
for m in [
self.conv_first, self.conv_second, self.l1_upsample_conv, self.conv_body, self.conv_up1,
self.conv_up2, self.conv_hr, self.conv_last
]:
if m is not None:
default_init_weights(m, 0.1)
def forward(self, x):
trunk = self.conv_first(x)
trunk = self.conv_second(trunk)
trunk = sequential_checkpoint(self.l1_blocks, len(self.l2_blocks), trunk)
trunk = F.interpolate(trunk, scale_factor=2, mode="nearest")
trunk = self.l1_upsample_conv(trunk)
trunk = sequential_checkpoint(self.l2_blocks, len(self.l2_blocks), trunk)
body_feat = self.conv_body(trunk)
feat = trunk + body_feat
# upsample
out = self.lrelu(
self.conv_up1(F.interpolate(feat, scale_factor=2, mode='nearest')))
if self.scale == 4:
out = self.lrelu(
self.conv_up2(F.interpolate(out, scale_factor=2, mode='nearest')))
else:
out = self.lrelu(self.conv_up2(out))
out = self.conv_last(self.lrelu(self.conv_hr(out)))
return out
def visual_dbg(self, step, path):
pass
class PixelShufflingSteppedResRRDBNet(nn.Module):
def __init__(self,
in_channels,
out_channels,
mid_channels=64,
l1_blocks=3,
l2_blocks=3,
growth_channels=32,
scale=2,
):
super().__init__()
self.scale = scale * 2 # This RRDB operates at half-scale resolution.
self.in_channels = in_channels
self.pix_unshuffle = PixelUnshuffle(4)
self.conv_first = nn.Conv2d(4*4*in_channels, mid_channels*2, 3, stride=1, padding=1)
self.l1_blocks = nn.Sequential(*[RRDB(mid_channels*2, growth_channels*2) for _ in range(l1_blocks)])
self.l1_upsample_conv = nn.Conv2d(mid_channels*2, mid_channels, 3, stride=1, padding=1)
self.l2_blocks = nn.Sequential(*[RRDB(mid_channels, growth_channels, 2) for _ in range(l2_blocks)])
self.conv_body = nn.Conv2d(mid_channels, mid_channels, 3, 1, 1)
# upsample
self.conv_up1 = nn.Conv2d(mid_channels, mid_channels, 3, 1, 1)
self.conv_up2 = nn.Conv2d(mid_channels, mid_channels, 3, 1, 1)
self.conv_hr = nn.Conv2d(mid_channels, mid_channels, 3, 1, 1)
self.conv_last = nn.Conv2d(mid_channels, out_channels, 3, 1, 1)
self.lrelu = nn.LeakyReLU(negative_slope=0.2, inplace=True)
for m in [
self.conv_first, self.l1_upsample_conv, self.conv_body, self.conv_up1,
self.conv_up2, self.conv_hr, self.conv_last
]:
if m is not None:
default_init_weights(m, 0.1)
def forward(self, x):
trunk = self.conv_first(self.pix_unshuffle(x))
trunk = sequential_checkpoint(self.l1_blocks, len(self.l1_blocks), trunk)
trunk = F.interpolate(trunk, scale_factor=2, mode="nearest")
trunk = self.l1_upsample_conv(trunk)
trunk = sequential_checkpoint(self.l2_blocks, len(self.l2_blocks), trunk)
body_feat = self.conv_body(trunk)
feat = trunk + body_feat
# upsample
out = self.lrelu(
self.conv_up1(F.interpolate(feat, scale_factor=2, mode='nearest')))
if self.scale == 4:
out = self.lrelu(
self.conv_up2(F.interpolate(out, scale_factor=2, mode='nearest')))
else:
out = self.lrelu(self.conv_up2(out))
out = self.conv_last(self.lrelu(self.conv_hr(out)))
return out
def visual_dbg(self, step, path):
pass