Fix circular imports
This commit is contained in:
parent
99f0cfaab5
commit
e587d549f7
|
@ -1,14 +1,14 @@
|
|||
from models.archs.stylegan.stylegan2 import StyleGan2DivergenceLoss, StyleGan2PathLengthLoss
|
||||
from models.archs.stylegan.stylegan2_unet_disc import StyleGan2UnetDivergenceLoss
|
||||
import models.archs.stylegan.stylegan2 as stylegan2
|
||||
import models.archs.stylegan.stylegan2_unet_disc as stylegan2_unet
|
||||
|
||||
|
||||
def create_stylegan2_loss(opt_loss, env):
|
||||
type = opt_loss['type']
|
||||
if type == 'stylegan2_divergence':
|
||||
return StyleGan2DivergenceLoss(opt_loss, env)
|
||||
return stylegan2.StyleGan2DivergenceLoss(opt_loss, env)
|
||||
elif type == 'stylegan2_pathlen':
|
||||
return StyleGan2PathLengthLoss(opt_loss, env)
|
||||
return stylegan2.StyleGan2PathLengthLoss(opt_loss, env)
|
||||
elif type == 'stylegan2_unet_divergence':
|
||||
return StyleGan2UnetDivergenceLoss(opt_loss, env)
|
||||
return stylegan2_unet.StyleGan2UnetDivergenceLoss(opt_loss, env)
|
||||
else:
|
||||
raise NotImplementedError
|
|
@ -6,6 +6,8 @@ import munch
|
|||
import torch
|
||||
import torchvision
|
||||
from munch import munchify
|
||||
import models.archs.stylegan.stylegan2 as stylegan2
|
||||
import models.archs.stylegan.stylegan2_unet_disc as stylegan2_unet
|
||||
|
||||
import models.archs.fixup_resnet.DiscriminatorResnet_arch as DiscriminatorResnet_arch
|
||||
import models.archs.RRDBNet_arch as RRDBNet_arch
|
||||
|
@ -22,8 +24,6 @@ from models.archs.stylegan.Discriminator_StyleGAN import StyleGanDiscriminator
|
|||
from models.archs.pyramid_arch import BasicResamplingFlowNet
|
||||
from models.archs.rrdb_with_adain_latent import AdaRRDBNet, LinearLatentEstimator
|
||||
from models.archs.rrdb_with_latent import LatentEstimator, RRDBNetWithLatent, LatentEstimator2
|
||||
from models.archs.stylegan.stylegan2 import StyleGan2GeneratorWithLatent, StyleGan2Discriminator, StyleGan2Augmentor
|
||||
from models.archs.stylegan.stylegan2_unet_disc import StyleGan2UnetDiscriminator
|
||||
from models.archs.teco_resgen import TecoGen
|
||||
|
||||
logger = logging.getLogger('base')
|
||||
|
@ -136,7 +136,7 @@ def define_G(opt, net_key='network_G', scale=None):
|
|||
elif which_model == 'stylegan2':
|
||||
is_structured = opt_net['structured'] if 'structured' in opt_net.keys() else False
|
||||
attn = opt_net['attn_layers'] if 'attn_layers' in opt_net.keys() else []
|
||||
netG = StyleGan2GeneratorWithLatent(image_size=opt_net['image_size'], latent_dim=opt_net['latent_dim'],
|
||||
netG = stylegan2.StyleGan2GeneratorWithLatent(image_size=opt_net['image_size'], latent_dim=opt_net['latent_dim'],
|
||||
style_depth=opt_net['style_depth'], structure_input=is_structured,
|
||||
attn_layers=attn)
|
||||
else:
|
||||
|
@ -199,11 +199,11 @@ def define_D_net(opt_net, img_sz=None, wrap=False):
|
|||
netD = SRGAN_arch.PyramidDiscriminator(in_nc=3, nf=opt_net['nf'])
|
||||
elif which_model == "stylegan2_discriminator":
|
||||
attn = opt_net['attn_layers'] if 'attn_layers' in opt_net.keys() else []
|
||||
disc = StyleGan2Discriminator(image_size=opt_net['image_size'], input_filters=opt_net['in_nc'], attn_layers=attn)
|
||||
netD = StyleGan2Augmentor(disc, opt_net['image_size'], types=opt_net['augmentation_types'], prob=opt_net['augmentation_probability'])
|
||||
disc = stylegan2.StyleGan2Discriminator(image_size=opt_net['image_size'], input_filters=opt_net['in_nc'], attn_layers=attn)
|
||||
netD = stylegan2.StyleGan2Augmentor(disc, opt_net['image_size'], types=opt_net['augmentation_types'], prob=opt_net['augmentation_probability'])
|
||||
elif which_model == "stylegan2_unet":
|
||||
disc = StyleGan2UnetDiscriminator(image_size=opt_net['image_size'], input_filters=opt_net['in_nc'])
|
||||
netD = StyleGan2Augmentor(disc, opt_net['image_size'], types=opt_net['augmentation_types'], prob=opt_net['augmentation_probability'])
|
||||
disc = stylegan2_unet.StyleGan2UnetDiscriminator(image_size=opt_net['image_size'], input_filters=opt_net['in_nc'])
|
||||
netD = stylegan2.StyleGan2Augmentor(disc, opt_net['image_size'], types=opt_net['augmentation_types'], prob=opt_net['augmentation_probability'])
|
||||
else:
|
||||
raise NotImplementedError('Discriminator model [{:s}] not recognized'.format(which_model))
|
||||
return netD
|
||||
|
|
Loading…
Reference in New Issue
Block a user