new diffusion updates from testing
This commit is contained in:
parent
935a4e853e
commit
e58dab14c3
|
@ -1,17 +1,41 @@
|
|||
import operator
|
||||
import functools
|
||||
from collections import OrderedDict
|
||||
|
||||
from models.diffusion.nn import timestep_embedding, normalization, zero_module, conv_nd, linear
|
||||
from models.diffusion.unet_diffusion import AttentionPool2d, AttentionBlock, TimestepEmbedSequential, \
|
||||
Downsample, Upsample, TimestepBlock
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import torch.nn.functional as F
|
||||
from torch import autocast
|
||||
from x_transformers.x_transformers import AbsolutePositionalEmbedding, AttentionLayers
|
||||
|
||||
from models.gpt_voice.mini_encoder import AudioMiniEncoder, EmbeddingCombiner
|
||||
from models.diffusion.nn import timestep_embedding, normalization, zero_module, conv_nd, linear
|
||||
from models.diffusion.unet_diffusion import AttentionBlock, TimestepEmbedSequential, \
|
||||
Downsample, Upsample, TimestepBlock
|
||||
from models.gpt_voice.mini_encoder import AudioMiniEncoder
|
||||
from scripts.audio.gen.use_diffuse_tts import ceil_multiple
|
||||
from trainer.networks import register_model
|
||||
from utils.util import checkpoint
|
||||
from x_transformers import Encoder, ContinuousTransformerWrapper
|
||||
|
||||
|
||||
class CheckpointedLayer(nn.Module):
|
||||
"""
|
||||
Wraps a module. When forward() is called, passes kwargs that require_grad through torch.checkpoint() and bypasses
|
||||
checkpoint for all other args.
|
||||
"""
|
||||
def __init__(self, wrap):
|
||||
super().__init__()
|
||||
self.wrap = wrap
|
||||
|
||||
def forward(self, x, **kwargs):
|
||||
kw_requires_grad = {}
|
||||
kw_no_grad = {}
|
||||
for k, v in kwargs.items():
|
||||
if v is not None and isinstance(v, torch.Tensor) and v.requires_grad:
|
||||
kw_requires_grad[k] = v
|
||||
else:
|
||||
kw_no_grad[k] = v
|
||||
partial = functools.partial(self.wrap, **kw_no_grad)
|
||||
return torch.utils.checkpoint.checkpoint(partial, x, **kw_requires_grad)
|
||||
|
||||
|
||||
class ResBlock(TimestepBlock):
|
||||
|
@ -186,6 +210,12 @@ class DiffusionTts(nn.Module):
|
|||
ch = model_channels
|
||||
ds = 1
|
||||
|
||||
class Permute(nn.Module):
|
||||
def __init__(self):
|
||||
super().__init__()
|
||||
def forward(self, x):
|
||||
return x.permute(0,2,1)
|
||||
|
||||
for level, (mult, num_blocks) in enumerate(zip(channel_mult, num_res_blocks)):
|
||||
if ds in token_conditioning_resolutions:
|
||||
token_conditioning_block = nn.Conv1d(embedding_dim, ch, 1)
|
||||
|
@ -230,6 +260,26 @@ class DiffusionTts(nn.Module):
|
|||
ds *= 2
|
||||
self._feature_size += ch
|
||||
|
||||
mid_transformer = ContinuousTransformerWrapper(
|
||||
max_seq_len=-1, # Should be unused
|
||||
use_pos_emb=False,
|
||||
attn_layers=Encoder(
|
||||
dim=ch,
|
||||
depth=8,
|
||||
heads=num_heads,
|
||||
ff_dropout=dropout,
|
||||
attn_dropout=dropout,
|
||||
use_rmsnorm=True,
|
||||
ff_glu=True,
|
||||
rotary_pos_emb=True,
|
||||
)
|
||||
)
|
||||
|
||||
for i in range(len(mid_transformer.attn_layers.layers)):
|
||||
n, b, r = mid_transformer.attn_layers.layers[i]
|
||||
mid_transformer.attn_layers.layers[i] = nn.ModuleList([n, CheckpointedLayer(b), r])
|
||||
|
||||
|
||||
self.middle_block = TimestepEmbedSequential(
|
||||
ResBlock(
|
||||
ch,
|
||||
|
@ -238,11 +288,9 @@ class DiffusionTts(nn.Module):
|
|||
dims=dims,
|
||||
kernel_size=kernel_size,
|
||||
),
|
||||
AttentionBlock(
|
||||
ch,
|
||||
num_heads=num_heads,
|
||||
num_head_channels=num_head_channels,
|
||||
),
|
||||
Permute(),
|
||||
mid_transformer,
|
||||
Permute(),
|
||||
ResBlock(
|
||||
ch,
|
||||
time_embed_dim,
|
||||
|
@ -318,41 +366,48 @@ class DiffusionTts(nn.Module):
|
|||
:param tokens: an aligned text input.
|
||||
:return: an [N x C x ...] Tensor of outputs.
|
||||
"""
|
||||
orig_x_shape = x.shape[-1]
|
||||
cm = ceil_multiple(x.shape[-1], 2048)
|
||||
if cm != 0:
|
||||
pc = (cm-x.shape[-1])/x.shape[-1]
|
||||
x = F.pad(x, (0,cm-x.shape[-1]))
|
||||
tokens = F.pad(tokens, (0,int(pc*tokens.shape[-1])))
|
||||
if self.conditioning_enabled:
|
||||
assert conditioning_input is not None
|
||||
with autocast(x.device.type):
|
||||
orig_x_shape = x.shape[-1]
|
||||
cm = ceil_multiple(x.shape[-1], 2048)
|
||||
if cm != 0:
|
||||
pc = (cm-x.shape[-1])/x.shape[-1]
|
||||
x = F.pad(x, (0,cm-x.shape[-1]))
|
||||
tokens = F.pad(tokens, (0,int(pc*tokens.shape[-1])))
|
||||
if self.conditioning_enabled:
|
||||
assert conditioning_input is not None
|
||||
|
||||
hs = []
|
||||
time_emb = self.time_embed(timestep_embedding(timesteps, self.model_channels))
|
||||
hs = []
|
||||
time_emb = self.time_embed(timestep_embedding(timesteps, self.model_channels))
|
||||
|
||||
# Mask out guidance tokens for un-guided diffusion.
|
||||
if self.training and self.nil_guidance_fwd_proportion > 0:
|
||||
token_mask = torch.rand(tokens.shape, device=tokens.device) < self.nil_guidance_fwd_proportion
|
||||
tokens = torch.where(token_mask, self.mask_token_id, tokens)
|
||||
code_emb = self.code_embedding(tokens).permute(0,2,1)
|
||||
if self.conditioning_enabled:
|
||||
cond_emb = self.contextual_embedder(conditioning_input)
|
||||
code_emb = cond_emb.unsqueeze(-1) * code_emb
|
||||
# Mask out guidance tokens for un-guided diffusion.
|
||||
if self.training and self.nil_guidance_fwd_proportion > 0:
|
||||
token_mask = torch.rand(tokens.shape, device=tokens.device) < self.nil_guidance_fwd_proportion
|
||||
tokens = torch.where(token_mask, self.mask_token_id, tokens)
|
||||
code_emb = self.code_embedding(tokens).permute(0,2,1)
|
||||
if self.conditioning_enabled:
|
||||
cond_emb = self.contextual_embedder(conditioning_input)
|
||||
code_emb = cond_emb.unsqueeze(-1) * code_emb
|
||||
|
||||
h = x.type(self.dtype)
|
||||
first = False # First block has autocast disabled.
|
||||
time_emb = time_emb.float()
|
||||
h = x
|
||||
for k, module in enumerate(self.input_blocks):
|
||||
if isinstance(module, nn.Conv1d):
|
||||
h_tok = F.interpolate(module(code_emb), size=(h.shape[-1]), mode='nearest')
|
||||
h = h + h_tok
|
||||
else:
|
||||
with autocast(x.device.type, enabled=not first):
|
||||
if isinstance(module, nn.Conv1d):
|
||||
h_tok = F.interpolate(module(code_emb), size=(h.shape[-1]), mode='nearest')
|
||||
h = h + h_tok
|
||||
else:
|
||||
h = module(h, time_emb)
|
||||
hs.append(h)
|
||||
first = True
|
||||
with autocast(x.device.type):
|
||||
h = self.middle_block(h, time_emb)
|
||||
for module in self.output_blocks:
|
||||
h = torch.cat([h, hs.pop()], dim=1)
|
||||
h = module(h, time_emb)
|
||||
hs.append(h)
|
||||
h = self.middle_block(h, time_emb)
|
||||
for module in self.output_blocks:
|
||||
h = torch.cat([h, hs.pop()], dim=1)
|
||||
h = module(h, time_emb)
|
||||
h = h.type(x.dtype)
|
||||
out = self.out(h)
|
||||
h = h.type(x.dtype)
|
||||
h = h.float()
|
||||
out = self.out(h) # Last block also has autocast disabled.
|
||||
return out[:, :, :orig_x_shape]
|
||||
|
||||
|
||||
|
|
406
codes/models/gpt_voice/unet_diffusion_tts4.py
Normal file
406
codes/models/gpt_voice/unet_diffusion_tts4.py
Normal file
|
@ -0,0 +1,406 @@
|
|||
import functools
|
||||
from collections import OrderedDict
|
||||
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import torch.nn.functional as F
|
||||
from torch import autocast
|
||||
from x_transformers.x_transformers import AbsolutePositionalEmbedding, AttentionLayers
|
||||
|
||||
from models.diffusion.nn import timestep_embedding, normalization, zero_module, conv_nd, linear
|
||||
from models.diffusion.unet_diffusion import AttentionBlock, TimestepEmbedSequential, \
|
||||
Downsample, Upsample, TimestepBlock
|
||||
from models.gpt_voice.mini_encoder import AudioMiniEncoder
|
||||
from scripts.audio.gen.use_diffuse_tts import ceil_multiple
|
||||
from trainer.networks import register_model
|
||||
from utils.util import checkpoint
|
||||
from x_transformers import Encoder, ContinuousTransformerWrapper
|
||||
|
||||
|
||||
class CheckpointedLayer(nn.Module):
|
||||
"""
|
||||
Wraps a module. When forward() is called, passes kwargs that require_grad through torch.checkpoint() and bypasses
|
||||
checkpoint for all other args.
|
||||
"""
|
||||
def __init__(self, wrap):
|
||||
super().__init__()
|
||||
self.wrap = wrap
|
||||
|
||||
def forward(self, x, **kwargs):
|
||||
kw_requires_grad = {}
|
||||
kw_no_grad = {}
|
||||
for k, v in kwargs.items():
|
||||
if v is not None and isinstance(v, torch.Tensor) and v.requires_grad:
|
||||
kw_requires_grad[k] = v
|
||||
else:
|
||||
kw_no_grad[k] = v
|
||||
partial = functools.partial(self.wrap, **kw_no_grad)
|
||||
return torch.utils.checkpoint.checkpoint(partial, x, **kw_requires_grad)
|
||||
|
||||
|
||||
class ResBlock(TimestepBlock):
|
||||
def __init__(
|
||||
self,
|
||||
channels,
|
||||
emb_channels,
|
||||
dropout,
|
||||
out_channels=None,
|
||||
dims=2,
|
||||
kernel_size=3,
|
||||
):
|
||||
super().__init__()
|
||||
self.channels = channels
|
||||
self.emb_channels = emb_channels
|
||||
self.dropout = dropout
|
||||
self.out_channels = out_channels or channels
|
||||
padding = 1 if kernel_size == 3 else 2
|
||||
|
||||
self.in_layers = nn.Sequential(
|
||||
normalization(channels),
|
||||
nn.SiLU(),
|
||||
conv_nd(dims, channels, self.out_channels, 1, padding=0),
|
||||
)
|
||||
|
||||
self.emb_layers = nn.Sequential(
|
||||
nn.SiLU(),
|
||||
linear(
|
||||
emb_channels,
|
||||
self.out_channels,
|
||||
),
|
||||
)
|
||||
self.out_layers = nn.Sequential(
|
||||
normalization(self.out_channels),
|
||||
nn.SiLU(),
|
||||
nn.Dropout(p=dropout),
|
||||
zero_module(
|
||||
conv_nd(dims, self.out_channels, self.out_channels, kernel_size, padding=padding)
|
||||
),
|
||||
)
|
||||
|
||||
if self.out_channels == channels:
|
||||
self.skip_connection = nn.Identity()
|
||||
else:
|
||||
self.skip_connection = conv_nd(dims, channels, self.out_channels, 1)
|
||||
|
||||
def forward(self, x, emb):
|
||||
"""
|
||||
Apply the block to a Tensor, conditioned on a timestep embedding.
|
||||
|
||||
:param x: an [N x C x ...] Tensor of features.
|
||||
:param emb: an [N x emb_channels] Tensor of timestep embeddings.
|
||||
:return: an [N x C x ...] Tensor of outputs.
|
||||
"""
|
||||
return checkpoint(
|
||||
self._forward, x, emb
|
||||
)
|
||||
|
||||
def _forward(self, x, emb):
|
||||
h = self.in_layers(x)
|
||||
emb_out = self.emb_layers(emb).type(h.dtype)
|
||||
while len(emb_out.shape) < len(h.shape):
|
||||
emb_out = emb_out[..., None]
|
||||
h = h + emb_out
|
||||
h = self.out_layers(h)
|
||||
return self.skip_connection(x) + h
|
||||
|
||||
|
||||
class DiffusionTts(nn.Module):
|
||||
"""
|
||||
The full UNet model with attention and timestep embedding.
|
||||
|
||||
Customized to be conditioned on an aligned token prior.
|
||||
|
||||
:param in_channels: channels in the input Tensor.
|
||||
:param num_tokens: number of tokens (e.g. characters) which can be provided.
|
||||
:param model_channels: base channel count for the model.
|
||||
:param out_channels: channels in the output Tensor.
|
||||
:param num_res_blocks: number of residual blocks per downsample.
|
||||
:param attention_resolutions: a collection of downsample rates at which
|
||||
attention will take place. May be a set, list, or tuple.
|
||||
For example, if this contains 4, then at 4x downsampling, attention
|
||||
will be used.
|
||||
:param dropout: the dropout probability.
|
||||
:param channel_mult: channel multiplier for each level of the UNet.
|
||||
:param conv_resample: if True, use learned convolutions for upsampling and
|
||||
downsampling.
|
||||
:param dims: determines if the signal is 1D, 2D, or 3D.
|
||||
:param num_heads: the number of attention heads in each attention layer.
|
||||
:param num_heads_channels: if specified, ignore num_heads and instead use
|
||||
a fixed channel width per attention head.
|
||||
:param num_heads_upsample: works with num_heads to set a different number
|
||||
of heads for upsampling. Deprecated.
|
||||
:param use_scale_shift_norm: use a FiLM-like conditioning mechanism.
|
||||
:param resblock_updown: use residual blocks for up/downsampling.
|
||||
:param use_new_attention_order: use a different attention pattern for potentially
|
||||
increased efficiency.
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
model_channels,
|
||||
in_channels=1,
|
||||
num_tokens=32,
|
||||
out_channels=2, # mean and variance
|
||||
dropout=0,
|
||||
# res 1, 2, 4, 8,16,32,64,128,256,512, 1K, 2K
|
||||
channel_mult= (1,1.5,2, 3, 4, 6, 8, 12, 16, 24, 32, 48),
|
||||
num_res_blocks=(1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2),
|
||||
# spec_cond: 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0)
|
||||
# attn: 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1
|
||||
token_conditioning_resolutions=(1,16,),
|
||||
attention_resolutions=(512,1024,2048),
|
||||
conv_resample=True,
|
||||
dims=1,
|
||||
use_fp16=False,
|
||||
num_heads=1,
|
||||
num_head_channels=-1,
|
||||
num_heads_upsample=-1,
|
||||
kernel_size=3,
|
||||
scale_factor=2,
|
||||
conditioning_inputs_provided=True,
|
||||
time_embed_dim_multiplier=4,
|
||||
nil_guidance_fwd_proportion=.3,
|
||||
):
|
||||
super().__init__()
|
||||
|
||||
if num_heads_upsample == -1:
|
||||
num_heads_upsample = num_heads
|
||||
|
||||
self.in_channels = in_channels
|
||||
self.model_channels = model_channels
|
||||
self.out_channels = out_channels
|
||||
self.attention_resolutions = attention_resolutions
|
||||
self.dropout = dropout
|
||||
self.channel_mult = channel_mult
|
||||
self.conv_resample = conv_resample
|
||||
self.dtype = torch.float16 if use_fp16 else torch.float32
|
||||
self.num_heads = num_heads
|
||||
self.num_head_channels = num_head_channels
|
||||
self.num_heads_upsample = num_heads_upsample
|
||||
self.dims = dims
|
||||
self.nil_guidance_fwd_proportion = nil_guidance_fwd_proportion
|
||||
self.mask_token_id = num_tokens
|
||||
|
||||
padding = 1 if kernel_size == 3 else 2
|
||||
|
||||
time_embed_dim = model_channels * time_embed_dim_multiplier
|
||||
self.time_embed = nn.Sequential(
|
||||
linear(model_channels, time_embed_dim),
|
||||
nn.SiLU(),
|
||||
linear(time_embed_dim, time_embed_dim),
|
||||
)
|
||||
|
||||
embedding_dim = model_channels * 4
|
||||
self.code_embedding = nn.Embedding(num_tokens+1, embedding_dim)
|
||||
self.conditioning_enabled = conditioning_inputs_provided
|
||||
if conditioning_inputs_provided:
|
||||
self.contextual_embedder = AudioMiniEncoder(in_channels, embedding_dim, base_channels=32, depth=6, resnet_blocks=1,
|
||||
attn_blocks=2, num_attn_heads=2, dropout=dropout, downsample_factor=4, kernel_size=5)
|
||||
|
||||
self.input_blocks = nn.ModuleList(
|
||||
[
|
||||
TimestepEmbedSequential(
|
||||
conv_nd(dims, in_channels, model_channels, kernel_size, padding=padding)
|
||||
)
|
||||
]
|
||||
)
|
||||
token_conditioning_blocks = []
|
||||
self._feature_size = model_channels
|
||||
input_block_chans = [model_channels]
|
||||
ch = model_channels
|
||||
ds = 1
|
||||
|
||||
class Permute(nn.Module):
|
||||
def __init__(self):
|
||||
super().__init__()
|
||||
def forward(self, x):
|
||||
return x.permute(0,2,1)
|
||||
|
||||
for level, (mult, num_blocks) in enumerate(zip(channel_mult, num_res_blocks)):
|
||||
if ds in token_conditioning_resolutions:
|
||||
token_conditioning_block = nn.Conv1d(embedding_dim, ch, 1)
|
||||
token_conditioning_block.weight.data *= .02
|
||||
self.input_blocks.append(token_conditioning_block)
|
||||
token_conditioning_blocks.append(token_conditioning_block)
|
||||
|
||||
for _ in range(num_blocks):
|
||||
layers = [
|
||||
ResBlock(
|
||||
ch,
|
||||
time_embed_dim,
|
||||
dropout,
|
||||
out_channels=int(mult * model_channels),
|
||||
dims=dims,
|
||||
kernel_size=kernel_size,
|
||||
)
|
||||
]
|
||||
ch = int(mult * model_channels)
|
||||
if ds in attention_resolutions:
|
||||
layers.append(
|
||||
AttentionBlock(
|
||||
ch,
|
||||
num_heads=num_heads,
|
||||
num_head_channels=num_head_channels,
|
||||
)
|
||||
)
|
||||
self.input_blocks.append(TimestepEmbedSequential(*layers))
|
||||
self._feature_size += ch
|
||||
input_block_chans.append(ch)
|
||||
if level != len(channel_mult) - 1:
|
||||
out_ch = ch
|
||||
self.input_blocks.append(
|
||||
TimestepEmbedSequential(
|
||||
Downsample(
|
||||
ch, conv_resample, dims=dims, out_channels=out_ch, factor=scale_factor, ksize=1, pad=0
|
||||
)
|
||||
)
|
||||
)
|
||||
ch = out_ch
|
||||
input_block_chans.append(ch)
|
||||
ds *= 2
|
||||
self._feature_size += ch
|
||||
|
||||
self.middle_block = TimestepEmbedSequential(
|
||||
ResBlock(
|
||||
ch,
|
||||
time_embed_dim,
|
||||
dropout,
|
||||
dims=dims,
|
||||
kernel_size=kernel_size,
|
||||
),
|
||||
ResBlock(
|
||||
ch,
|
||||
time_embed_dim,
|
||||
dropout,
|
||||
dims=dims,
|
||||
kernel_size=kernel_size,
|
||||
),
|
||||
)
|
||||
self._feature_size += ch
|
||||
|
||||
self.output_blocks = nn.ModuleList([])
|
||||
for level, (mult, num_blocks) in list(enumerate(zip(channel_mult, num_res_blocks)))[::-1]:
|
||||
for i in range(num_blocks + 1):
|
||||
ich = input_block_chans.pop()
|
||||
layers = [
|
||||
ResBlock(
|
||||
ch + ich,
|
||||
time_embed_dim,
|
||||
dropout,
|
||||
out_channels=int(model_channels * mult),
|
||||
dims=dims,
|
||||
kernel_size=kernel_size,
|
||||
)
|
||||
]
|
||||
ch = int(model_channels * mult)
|
||||
if ds in attention_resolutions:
|
||||
layers.append(
|
||||
AttentionBlock(
|
||||
ch,
|
||||
num_heads=num_heads_upsample,
|
||||
num_head_channels=num_head_channels,
|
||||
)
|
||||
)
|
||||
if level and i == num_blocks:
|
||||
out_ch = ch
|
||||
layers.append(
|
||||
Upsample(ch, conv_resample, dims=dims, out_channels=out_ch, factor=scale_factor)
|
||||
)
|
||||
ds //= 2
|
||||
self.output_blocks.append(TimestepEmbedSequential(*layers))
|
||||
self._feature_size += ch
|
||||
|
||||
self.out = nn.Sequential(
|
||||
normalization(ch),
|
||||
nn.SiLU(),
|
||||
zero_module(conv_nd(dims, model_channels, out_channels, kernel_size, padding=padding)),
|
||||
)
|
||||
|
||||
def load_state_dict(self, state_dict: 'OrderedDict[str, Tensor]',
|
||||
strict: bool = True):
|
||||
# Temporary hack to allow the addition of nil-guidance token embeddings to the existing guidance embeddings.
|
||||
lsd = self.state_dict()
|
||||
revised = 0
|
||||
for i, blk in enumerate(self.input_blocks):
|
||||
if isinstance(blk, nn.Embedding):
|
||||
key = f'input_blocks.{i}.weight'
|
||||
if state_dict[key].shape[0] != lsd[key].shape[0]:
|
||||
t = torch.randn_like(lsd[key]) * .02
|
||||
t[:state_dict[key].shape[0]] = state_dict[key]
|
||||
state_dict[key] = t
|
||||
revised += 1
|
||||
print(f"Loaded experimental unet_diffusion_net with {revised} modifications.")
|
||||
return super().load_state_dict(state_dict, strict)
|
||||
|
||||
|
||||
|
||||
def forward(self, x, timesteps, tokens, conditioning_input=None):
|
||||
"""
|
||||
Apply the model to an input batch.
|
||||
|
||||
:param x: an [N x C x ...] Tensor of inputs.
|
||||
:param timesteps: a 1-D batch of timesteps.
|
||||
:param tokens: an aligned text input.
|
||||
:return: an [N x C x ...] Tensor of outputs.
|
||||
"""
|
||||
with autocast(x.device.type):
|
||||
orig_x_shape = x.shape[-1]
|
||||
cm = ceil_multiple(x.shape[-1], 2048)
|
||||
if cm != 0:
|
||||
pc = (cm-x.shape[-1])/x.shape[-1]
|
||||
x = F.pad(x, (0,cm-x.shape[-1]))
|
||||
tokens = F.pad(tokens, (0,int(pc*tokens.shape[-1])))
|
||||
if self.conditioning_enabled:
|
||||
assert conditioning_input is not None
|
||||
|
||||
hs = []
|
||||
time_emb = self.time_embed(timestep_embedding(timesteps, self.model_channels))
|
||||
|
||||
# Mask out guidance tokens for un-guided diffusion.
|
||||
if self.training and self.nil_guidance_fwd_proportion > 0:
|
||||
token_mask = torch.rand(tokens.shape, device=tokens.device) < self.nil_guidance_fwd_proportion
|
||||
tokens = torch.where(token_mask, self.mask_token_id, tokens)
|
||||
code_emb = self.code_embedding(tokens).permute(0,2,1)
|
||||
if self.conditioning_enabled:
|
||||
cond_emb = self.contextual_embedder(conditioning_input)
|
||||
code_emb = cond_emb.unsqueeze(-1) * code_emb
|
||||
|
||||
first = False # First block has autocast disabled.
|
||||
time_emb = time_emb.float()
|
||||
h = x
|
||||
for k, module in enumerate(self.input_blocks):
|
||||
with autocast(x.device.type, enabled=not first):
|
||||
if isinstance(module, nn.Conv1d):
|
||||
h_tok = F.interpolate(module(code_emb), size=(h.shape[-1]), mode='nearest')
|
||||
h = h + h_tok
|
||||
else:
|
||||
h = module(h, time_emb)
|
||||
hs.append(h)
|
||||
first = True
|
||||
with autocast(x.device.type):
|
||||
h = self.middle_block(h, time_emb)
|
||||
for module in self.output_blocks:
|
||||
h = torch.cat([h, hs.pop()], dim=1)
|
||||
h = module(h, time_emb)
|
||||
h = h.type(x.dtype)
|
||||
h = h.float()
|
||||
out = self.out(h) # Last block also has autocast disabled.
|
||||
return out[:, :, :orig_x_shape]
|
||||
|
||||
|
||||
@register_model
|
||||
def register_diffusion_tts4(opt_net, opt):
|
||||
return DiffusionTts(**opt_net['kwargs'])
|
||||
|
||||
|
||||
# Test for ~4 second audio clip at 22050Hz
|
||||
if __name__ == '__main__':
|
||||
clip = torch.randn(4, 1, 86016)
|
||||
tok = torch.randint(0,30, (4,388))
|
||||
cond = torch.randn(4, 1, 44000)
|
||||
ts = torch.LongTensor([555, 556, 600, 600])
|
||||
model = DiffusionTts(64, channel_mult=[1,1.5,2, 3, 4, 6, 8, 8, 8, 8], num_res_blocks=[2, 2, 2, 2, 2, 2, 2, 4, 4, 4],
|
||||
token_conditioning_resolutions=[1,4,16,64], attention_resolutions=[256,512], num_heads=4, kernel_size=3,
|
||||
scale_factor=2, conditioning_inputs_provided=True, time_embed_dim_multiplier=4)
|
||||
model(clip, ts, tok, cond)
|
||||
|
460
codes/models/gpt_voice/unet_diffusion_tts5.py
Normal file
460
codes/models/gpt_voice/unet_diffusion_tts5.py
Normal file
|
@ -0,0 +1,460 @@
|
|||
import functools
|
||||
from collections import OrderedDict
|
||||
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import torch.nn.functional as F
|
||||
from torch import autocast
|
||||
from x_transformers.x_transformers import AbsolutePositionalEmbedding, AttentionLayers
|
||||
|
||||
from models.diffusion.nn import timestep_embedding, normalization, zero_module, conv_nd, linear
|
||||
from models.diffusion.unet_diffusion import AttentionBlock, TimestepEmbedSequential, \
|
||||
Downsample, Upsample, TimestepBlock
|
||||
from models.gpt_voice.mini_encoder import AudioMiniEncoder
|
||||
from scripts.audio.gen.use_diffuse_tts import ceil_multiple
|
||||
from trainer.networks import register_model
|
||||
from utils.util import checkpoint
|
||||
from x_transformers import Encoder, ContinuousTransformerWrapper
|
||||
|
||||
|
||||
class CheckpointedLayer(nn.Module):
|
||||
"""
|
||||
Wraps a module. When forward() is called, passes kwargs that require_grad through torch.checkpoint() and bypasses
|
||||
checkpoint for all other args.
|
||||
"""
|
||||
def __init__(self, wrap):
|
||||
super().__init__()
|
||||
self.wrap = wrap
|
||||
|
||||
def forward(self, x, **kwargs):
|
||||
kw_requires_grad = {}
|
||||
kw_no_grad = {}
|
||||
for k, v in kwargs.items():
|
||||
if v is not None and isinstance(v, torch.Tensor) and v.requires_grad:
|
||||
kw_requires_grad[k] = v
|
||||
else:
|
||||
kw_no_grad[k] = v
|
||||
partial = functools.partial(self.wrap, **kw_no_grad)
|
||||
return torch.utils.checkpoint.checkpoint(partial, x, **kw_requires_grad)
|
||||
|
||||
|
||||
class CheckpointedXTransformerEncoder(nn.Module):
|
||||
"""
|
||||
Wraps a ContinuousTransformerWrapper and applies CheckpointedLayer to each layer and permutes from channels-mid
|
||||
to channels-last that XTransformer expects.
|
||||
"""
|
||||
def __init__(self, **xtransformer_kwargs):
|
||||
super().__init__()
|
||||
self.transformer = ContinuousTransformerWrapper(**xtransformer_kwargs)
|
||||
|
||||
for i in range(len(self.transformer.attn_layers.layers)):
|
||||
n, b, r = self.transformer.attn_layers.layers[i]
|
||||
self.transformer.attn_layers.layers[i] = nn.ModuleList([n, CheckpointedLayer(b), r])
|
||||
|
||||
def forward(self, x):
|
||||
x = x.permute(0,2,1)
|
||||
h = self.transformer(x)
|
||||
return h.permute(0,2,1)
|
||||
|
||||
|
||||
class ResBlock(TimestepBlock):
|
||||
def __init__(
|
||||
self,
|
||||
channels,
|
||||
emb_channels,
|
||||
dropout,
|
||||
out_channels=None,
|
||||
dims=2,
|
||||
kernel_size=3,
|
||||
):
|
||||
super().__init__()
|
||||
self.channels = channels
|
||||
self.emb_channels = emb_channels
|
||||
self.dropout = dropout
|
||||
self.out_channels = out_channels or channels
|
||||
padding = 1 if kernel_size == 3 else 2
|
||||
|
||||
self.in_layers = nn.Sequential(
|
||||
normalization(channels),
|
||||
nn.SiLU(),
|
||||
conv_nd(dims, channels, self.out_channels, 1, padding=0),
|
||||
)
|
||||
|
||||
self.emb_layers = nn.Sequential(
|
||||
nn.SiLU(),
|
||||
linear(
|
||||
emb_channels,
|
||||
self.out_channels,
|
||||
),
|
||||
)
|
||||
self.out_layers = nn.Sequential(
|
||||
normalization(self.out_channels),
|
||||
nn.SiLU(),
|
||||
nn.Dropout(p=dropout),
|
||||
zero_module(
|
||||
conv_nd(dims, self.out_channels, self.out_channels, kernel_size, padding=padding)
|
||||
),
|
||||
)
|
||||
|
||||
if self.out_channels == channels:
|
||||
self.skip_connection = nn.Identity()
|
||||
else:
|
||||
self.skip_connection = conv_nd(dims, channels, self.out_channels, 1)
|
||||
|
||||
def forward(self, x, emb):
|
||||
"""
|
||||
Apply the block to a Tensor, conditioned on a timestep embedding.
|
||||
|
||||
:param x: an [N x C x ...] Tensor of features.
|
||||
:param emb: an [N x emb_channels] Tensor of timestep embeddings.
|
||||
:return: an [N x C x ...] Tensor of outputs.
|
||||
"""
|
||||
return checkpoint(
|
||||
self._forward, x, emb
|
||||
)
|
||||
|
||||
def _forward(self, x, emb):
|
||||
h = self.in_layers(x)
|
||||
emb_out = self.emb_layers(emb).type(h.dtype)
|
||||
while len(emb_out.shape) < len(h.shape):
|
||||
emb_out = emb_out[..., None]
|
||||
h = h + emb_out
|
||||
h = self.out_layers(h)
|
||||
return self.skip_connection(x) + h
|
||||
|
||||
|
||||
class DiffusionTts(nn.Module):
|
||||
"""
|
||||
The full UNet model with attention and timestep embedding.
|
||||
|
||||
Customized to be conditioned on an aligned token prior.
|
||||
|
||||
:param in_channels: channels in the input Tensor.
|
||||
:param num_tokens: number of tokens (e.g. characters) which can be provided.
|
||||
:param model_channels: base channel count for the model.
|
||||
:param out_channels: channels in the output Tensor.
|
||||
:param num_res_blocks: number of residual blocks per downsample.
|
||||
:param attention_resolutions: a collection of downsample rates at which
|
||||
attention will take place. May be a set, list, or tuple.
|
||||
For example, if this contains 4, then at 4x downsampling, attention
|
||||
will be used.
|
||||
:param dropout: the dropout probability.
|
||||
:param channel_mult: channel multiplier for each level of the UNet.
|
||||
:param conv_resample: if True, use learned convolutions for upsampling and
|
||||
downsampling.
|
||||
:param dims: determines if the signal is 1D, 2D, or 3D.
|
||||
:param num_heads: the number of attention heads in each attention layer.
|
||||
:param num_heads_channels: if specified, ignore num_heads and instead use
|
||||
a fixed channel width per attention head.
|
||||
:param num_heads_upsample: works with num_heads to set a different number
|
||||
of heads for upsampling. Deprecated.
|
||||
:param use_scale_shift_norm: use a FiLM-like conditioning mechanism.
|
||||
:param resblock_updown: use residual blocks for up/downsampling.
|
||||
:param use_new_attention_order: use a different attention pattern for potentially
|
||||
increased efficiency.
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
model_channels,
|
||||
in_channels=1,
|
||||
num_tokens=32,
|
||||
out_channels=2, # mean and variance
|
||||
dropout=0,
|
||||
# res 1, 2, 4, 8,16,32,64,128,256,512, 1K, 2K
|
||||
channel_mult= (1,1.5,2, 3, 4, 6, 8, 12, 16, 24, 32, 48),
|
||||
num_res_blocks=(1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2),
|
||||
# spec_cond: 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0)
|
||||
# attn: 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1
|
||||
token_conditioning_resolutions=(1,16,),
|
||||
attention_resolutions=(512,1024,2048),
|
||||
conv_resample=True,
|
||||
dims=1,
|
||||
use_fp16=False,
|
||||
num_heads=1,
|
||||
num_head_channels=-1,
|
||||
num_heads_upsample=-1,
|
||||
kernel_size=3,
|
||||
scale_factor=2,
|
||||
conditioning_inputs_provided=True,
|
||||
time_embed_dim_multiplier=4,
|
||||
nil_guidance_fwd_proportion=.3,
|
||||
):
|
||||
super().__init__()
|
||||
|
||||
if num_heads_upsample == -1:
|
||||
num_heads_upsample = num_heads
|
||||
|
||||
self.in_channels = in_channels
|
||||
self.model_channels = model_channels
|
||||
self.out_channels = out_channels
|
||||
self.attention_resolutions = attention_resolutions
|
||||
self.dropout = dropout
|
||||
self.channel_mult = channel_mult
|
||||
self.conv_resample = conv_resample
|
||||
self.dtype = torch.float16 if use_fp16 else torch.float32
|
||||
self.num_heads = num_heads
|
||||
self.num_head_channels = num_head_channels
|
||||
self.num_heads_upsample = num_heads_upsample
|
||||
self.dims = dims
|
||||
self.nil_guidance_fwd_proportion = nil_guidance_fwd_proportion
|
||||
self.mask_token_id = num_tokens
|
||||
|
||||
padding = 1 if kernel_size == 3 else 2
|
||||
|
||||
time_embed_dim = model_channels * time_embed_dim_multiplier
|
||||
self.time_embed = nn.Sequential(
|
||||
linear(model_channels, time_embed_dim),
|
||||
nn.SiLU(),
|
||||
linear(time_embed_dim, time_embed_dim),
|
||||
)
|
||||
|
||||
embedding_dim = model_channels * 8
|
||||
self.code_embedding = nn.Embedding(num_tokens+1, embedding_dim)
|
||||
self.conditioning_enabled = conditioning_inputs_provided
|
||||
if conditioning_inputs_provided:
|
||||
self.contextual_embedder = AudioMiniEncoder(in_channels, embedding_dim, base_channels=32, depth=6, resnet_blocks=1,
|
||||
attn_blocks=2, num_attn_heads=2, dropout=dropout, downsample_factor=4, kernel_size=5)
|
||||
self.conditioning_encoder = CheckpointedXTransformerEncoder(
|
||||
max_seq_len=-1, # Should be unused
|
||||
use_pos_emb=False,
|
||||
attn_layers=Encoder(
|
||||
dim=embedding_dim,
|
||||
depth=8,
|
||||
heads=num_heads,
|
||||
ff_dropout=dropout,
|
||||
attn_dropout=dropout,
|
||||
use_rmsnorm=True,
|
||||
ff_glu=True,
|
||||
rotary_pos_emb=True,
|
||||
)
|
||||
)
|
||||
|
||||
self.input_blocks = nn.ModuleList(
|
||||
[
|
||||
TimestepEmbedSequential(
|
||||
conv_nd(dims, in_channels, model_channels, kernel_size, padding=padding)
|
||||
)
|
||||
]
|
||||
)
|
||||
token_conditioning_blocks = []
|
||||
self._feature_size = model_channels
|
||||
input_block_chans = [model_channels]
|
||||
ch = model_channels
|
||||
ds = 1
|
||||
|
||||
for level, (mult, num_blocks) in enumerate(zip(channel_mult, num_res_blocks)):
|
||||
if ds in token_conditioning_resolutions:
|
||||
token_conditioning_block = nn.Conv1d(embedding_dim, ch, 1)
|
||||
token_conditioning_block.weight.data *= .02
|
||||
self.input_blocks.append(token_conditioning_block)
|
||||
token_conditioning_blocks.append(token_conditioning_block)
|
||||
|
||||
for _ in range(num_blocks):
|
||||
layers = [
|
||||
ResBlock(
|
||||
ch,
|
||||
time_embed_dim,
|
||||
dropout,
|
||||
out_channels=int(mult * model_channels),
|
||||
dims=dims,
|
||||
kernel_size=kernel_size,
|
||||
)
|
||||
]
|
||||
ch = int(mult * model_channels)
|
||||
if ds in attention_resolutions:
|
||||
layers.append(
|
||||
AttentionBlock(
|
||||
ch,
|
||||
num_heads=num_heads,
|
||||
num_head_channels=num_head_channels,
|
||||
)
|
||||
)
|
||||
self.input_blocks.append(TimestepEmbedSequential(*layers))
|
||||
self._feature_size += ch
|
||||
input_block_chans.append(ch)
|
||||
if level != len(channel_mult) - 1:
|
||||
out_ch = ch
|
||||
self.input_blocks.append(
|
||||
TimestepEmbedSequential(
|
||||
Downsample(
|
||||
ch, conv_resample, dims=dims, out_channels=out_ch, factor=scale_factor, ksize=1, pad=0
|
||||
)
|
||||
)
|
||||
)
|
||||
ch = out_ch
|
||||
input_block_chans.append(ch)
|
||||
ds *= 2
|
||||
self._feature_size += ch
|
||||
|
||||
mid_transformer = CheckpointedXTransformerEncoder(
|
||||
max_seq_len=-1, # Should be unused
|
||||
use_pos_emb=False,
|
||||
attn_layers=Encoder(
|
||||
dim=ch,
|
||||
depth=8,
|
||||
heads=num_heads,
|
||||
ff_dropout=dropout,
|
||||
attn_dropout=dropout,
|
||||
use_rmsnorm=True,
|
||||
ff_glu=True,
|
||||
rotary_pos_emb=True,
|
||||
)
|
||||
)
|
||||
|
||||
|
||||
self.middle_block = TimestepEmbedSequential(
|
||||
ResBlock(
|
||||
ch,
|
||||
time_embed_dim,
|
||||
dropout,
|
||||
dims=dims,
|
||||
kernel_size=kernel_size,
|
||||
),
|
||||
mid_transformer,
|
||||
ResBlock(
|
||||
ch,
|
||||
time_embed_dim,
|
||||
dropout,
|
||||
dims=dims,
|
||||
kernel_size=kernel_size,
|
||||
),
|
||||
)
|
||||
self._feature_size += ch
|
||||
|
||||
self.output_blocks = nn.ModuleList([])
|
||||
for level, (mult, num_blocks) in list(enumerate(zip(channel_mult, num_res_blocks)))[::-1]:
|
||||
for i in range(num_blocks + 1):
|
||||
ich = input_block_chans.pop()
|
||||
layers = [
|
||||
ResBlock(
|
||||
ch + ich,
|
||||
time_embed_dim,
|
||||
dropout,
|
||||
out_channels=int(model_channels * mult),
|
||||
dims=dims,
|
||||
kernel_size=kernel_size,
|
||||
)
|
||||
]
|
||||
ch = int(model_channels * mult)
|
||||
if ds in attention_resolutions:
|
||||
layers.append(
|
||||
AttentionBlock(
|
||||
ch,
|
||||
num_heads=num_heads_upsample,
|
||||
num_head_channels=num_head_channels,
|
||||
)
|
||||
)
|
||||
if level and i == num_blocks:
|
||||
out_ch = ch
|
||||
layers.append(
|
||||
Upsample(ch, conv_resample, dims=dims, out_channels=out_ch, factor=scale_factor)
|
||||
)
|
||||
ds //= 2
|
||||
self.output_blocks.append(TimestepEmbedSequential(*layers))
|
||||
self._feature_size += ch
|
||||
|
||||
self.out = nn.Sequential(
|
||||
normalization(ch),
|
||||
nn.SiLU(),
|
||||
zero_module(conv_nd(dims, model_channels, out_channels, kernel_size, padding=padding)),
|
||||
)
|
||||
|
||||
def load_state_dict(self, state_dict: 'OrderedDict[str, Tensor]',
|
||||
strict: bool = True):
|
||||
# Temporary hack to allow the addition of nil-guidance token embeddings to the existing guidance embeddings.
|
||||
lsd = self.state_dict()
|
||||
revised = 0
|
||||
for i, blk in enumerate(self.input_blocks):
|
||||
if isinstance(blk, nn.Embedding):
|
||||
key = f'input_blocks.{i}.weight'
|
||||
if state_dict[key].shape[0] != lsd[key].shape[0]:
|
||||
t = torch.randn_like(lsd[key]) * .02
|
||||
t[:state_dict[key].shape[0]] = state_dict[key]
|
||||
state_dict[key] = t
|
||||
revised += 1
|
||||
print(f"Loaded experimental unet_diffusion_net with {revised} modifications.")
|
||||
return super().load_state_dict(state_dict, strict)
|
||||
|
||||
|
||||
|
||||
def forward(self, x, timesteps, tokens, conditioning_input=None):
|
||||
"""
|
||||
Apply the model to an input batch.
|
||||
|
||||
:param x: an [N x C x ...] Tensor of inputs.
|
||||
:param timesteps: a 1-D batch of timesteps.
|
||||
:param tokens: an aligned text input.
|
||||
:return: an [N x C x ...] Tensor of outputs.
|
||||
"""
|
||||
with autocast(x.device.type):
|
||||
orig_x_shape = x.shape[-1]
|
||||
cm = ceil_multiple(x.shape[-1], 2048)
|
||||
if cm != 0:
|
||||
pc = (cm-x.shape[-1])/x.shape[-1]
|
||||
x = F.pad(x, (0,cm-x.shape[-1]))
|
||||
tokens = F.pad(tokens, (0,int(pc*tokens.shape[-1])))
|
||||
if self.conditioning_enabled:
|
||||
assert conditioning_input is not None
|
||||
|
||||
hs = []
|
||||
time_emb = self.time_embed(timestep_embedding(timesteps, self.model_channels))
|
||||
|
||||
# Mask out guidance tokens for un-guided diffusion.
|
||||
if self.training and self.nil_guidance_fwd_proportion > 0:
|
||||
token_mask = torch.rand(tokens.shape, device=tokens.device) < self.nil_guidance_fwd_proportion
|
||||
tokens = torch.where(token_mask, self.mask_token_id, tokens)
|
||||
code_emb = self.code_embedding(tokens).permute(0,2,1)
|
||||
if self.conditioning_enabled:
|
||||
cond_emb = self.contextual_embedder(conditioning_input)
|
||||
code_emb = cond_emb.unsqueeze(-1) * code_emb
|
||||
code_emb = self.conditioning_encoder(code_emb)
|
||||
|
||||
first = True
|
||||
time_emb = time_emb.float()
|
||||
h = x
|
||||
for k, module in enumerate(self.input_blocks):
|
||||
if isinstance(module, nn.Conv1d):
|
||||
h_tok = F.interpolate(module(code_emb), size=(h.shape[-1]), mode='nearest')
|
||||
h = h + h_tok
|
||||
else:
|
||||
with autocast(x.device.type, enabled=not first):
|
||||
# First block has autocast disabled to allow a high precision signal to be properly vectorized.
|
||||
h = module(h, time_emb)
|
||||
hs.append(h)
|
||||
first = False
|
||||
h = self.middle_block(h, time_emb)
|
||||
for module in self.output_blocks:
|
||||
h = torch.cat([h, hs.pop()], dim=1)
|
||||
h = module(h, time_emb)
|
||||
|
||||
# Last block also has autocast disabled for high-precision outputs.
|
||||
h = h.float()
|
||||
out = self.out(h)
|
||||
return out[:, :, :orig_x_shape]
|
||||
|
||||
|
||||
@register_model
|
||||
def register_diffusion_tts5(opt_net, opt):
|
||||
return DiffusionTts(**opt_net['kwargs'])
|
||||
|
||||
|
||||
# Test for ~4 second audio clip at 22050Hz
|
||||
if __name__ == '__main__':
|
||||
clip = torch.randn(2, 1, 32768)
|
||||
tok = torch.randint(0,30, (2,388))
|
||||
cond = torch.randn(2, 1, 44000)
|
||||
ts = torch.LongTensor([600, 600])
|
||||
model = DiffusionTts(128,
|
||||
channel_mult=[1,1.5,2, 3, 4, 6, 8],
|
||||
num_res_blocks=[2, 2, 2, 2, 2, 2, 1],
|
||||
token_conditioning_resolutions=[1,4,16,64],
|
||||
attention_resolutions=[],
|
||||
num_heads=8,
|
||||
kernel_size=3,
|
||||
scale_factor=2,
|
||||
conditioning_inputs_provided=True,
|
||||
time_embed_dim_multiplier=4)
|
||||
model(clip, ts, tok, cond)
|
||||
torch.save(model.state_dict(), 'test_out.pth')
|
||||
|
|
@ -146,6 +146,7 @@ class Transformer(nn.Module):
|
|||
ff_dropout = 0.,
|
||||
attn_types = None,
|
||||
image_fmap_size = None,
|
||||
oned_fmap_size = None,
|
||||
sparse_attn = False,
|
||||
stable = False,
|
||||
sandwich_norm = False,
|
||||
|
@ -204,7 +205,7 @@ class Transformer(nn.Module):
|
|||
assert 'mlp' not in attn_types, 'you cannot use gMLPs if rotary embedding is turned on'
|
||||
|
||||
rot_dim = dim_head // 3
|
||||
img_seq_len = (image_fmap_size ** 2)
|
||||
img_seq_len = (image_fmap_size ** 2) if image_fmap_size is not None else oned_fmap_size
|
||||
text_len = seq_len - img_seq_len + 1
|
||||
|
||||
text_pos_emb = RotaryEmbedding(dim = rot_dim)
|
||||
|
@ -214,7 +215,7 @@ class Transformer(nn.Module):
|
|||
img_to_text_freqs = text_pos_emb(torch.full((img_seq_len,), 8192)) # image is given a position far away from text
|
||||
text_freqs = torch.cat((text_freqs, img_to_text_freqs), dim = 0)
|
||||
|
||||
img_freqs_axial = img_axial_pos_emb(torch.linspace(-1, 1, steps = image_fmap_size))
|
||||
img_freqs_axial = img_axial_pos_emb(torch.linspace(-1, 1, steps = image_fmap_size if image_fmap_size is not None else oned_fmap_size))
|
||||
img_freqs = broadcat((rearrange(img_freqs_axial, 'i d -> i () d'), rearrange(img_freqs_axial, 'j d -> () j d')), dim = -1)
|
||||
img_freqs = rearrange(img_freqs, 'h w d -> (h w) d')
|
||||
|
||||
|
|
|
@ -299,7 +299,7 @@ class Trainer:
|
|||
|
||||
if __name__ == '__main__':
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument('-opt', type=str, help='Path to option YAML file.', default='../experiments/train_diffusion_tts_experimental_fp16/train_diffusion_tts.yml')
|
||||
parser.add_argument('-opt', type=str, help='Path to option YAML file.', default='../options/train_diffusion_tts5_medium.yml')
|
||||
parser.add_argument('--launcher', choices=['none', 'pytorch'], default='none', help='job launcher')
|
||||
parser.add_argument('--local_rank', type=int, default=0)
|
||||
args = parser.parse_args()
|
||||
|
|
Loading…
Reference in New Issue
Block a user