iq checkin

who knows where I'm going with this.. I don't even know sometimes..
This commit is contained in:
James Betker 2022-07-19 09:13:27 -06:00
parent 625d7b6f38
commit eab7dc339d

View File

@ -19,28 +19,19 @@ class SelfClassifyingHead(nn.Module):
self.temperature = init_temperature
self.dec = Decoder(dim=dim, depth=head_depth, heads=4, ff_dropout=dropout, ff_mult=2, attn_dropout=dropout,
use_rmsnorm=True, ff_glu=True, do_checkpointing=False)
self.quantizer = VectorQuantize(out_dim, classes, codebook_dim=16, use_cosine_sim=False, threshold_ema_dead_code=2,
self.quantizer = VectorQuantize(out_dim, classes, use_cosine_sim=False, threshold_ema_dead_code=2,
sample_codebook_temp=init_temperature)
self.to_output = nn.Linear(dim, out_dim)
self.to_decoder = nn.Linear(out_dim, dim)
self.scale = nn.Linear(dim, 1, bias=False)
self.scale.weight.data.zero_()
def do_ar_step(self, x, used_codes):
MIN = -12
h = self.dec(x)
o = self.to_output(h[:, -1])
scale = (self.scale(h[:, -1]) + 1)
q, c, _ = self.quantizer(o, used_codes)
q = F.relu(q * scale) + MIN
q = torch.sigmoid(q)
return q, c
def forward(self, x):
with torch.no_grad():
# Force one of the codebook weights to zero, allowing the model to "skip" any classes it chooses.
self.quantizer._codebook.embed.data[0] = 0
def forward(self, x, target):
# manually perform ar regression over sequence_length=self.seq_len
stack = [x]
outputs = []
@ -48,12 +39,22 @@ class SelfClassifyingHead(nn.Module):
codes = []
for i in range(self.seq_len):
q, c = checkpoint(functools.partial(self.do_ar_step, used_codes=codes), torch.stack(stack, dim=1))
c_mask = c
c_mask[c==0] = -1 # Mask this out because we want code=0 to be capable of being repeated.
codes.append(c_mask)
stack.append(self.to_decoder(q))
outputs.append(q)
results.append(torch.stack(outputs, dim=1).sum(1))
output = torch.stack(outputs, dim=1).sum(1)
# If the addition would strictly make the result worse, set it to 0. Sometimes.
if len(results) > 0:
worsen = (F.mse_loss(outputs[-1], target, reduction='none').sum(-1) < F.mse_loss(output, target, reduction='none').sum(-1)).float()
probabilistic_worsen = torch.rand_like(worsen) * worsen > .5
output = output * probabilistic_worsen.unsqueeze(-1) # This is non-differentiable, but still deterministic.
c[probabilistic_worsen] = -1 # Code of -1 means the code was unused.
q = q * probabilistic_worsen.unsqueeze(-1)
outputs[-1] = q
codes.append(c)
stack.append(self.to_decoder(q))
results.append(output)
return results, torch.cat(codes, dim=0)
@ -100,6 +101,10 @@ class InstrumentQuantizer(nn.Module):
self.total_codes = 0
def forward(self, x):
# Normalize x on [0,1]
assert x.max() < 1.2 and x.min() > -1.2, f'{x.min()} {x.max()}'
x = (x + 1) / 2
b, c, s = x.shape
px = x.permute(0,2,1) # B,S,C shape
f = px.reshape(-1, self.op_dim)
@ -107,7 +112,7 @@ class InstrumentQuantizer(nn.Module):
for lyr in self.encoder:
h = lyr(h)
reconstructions, codes = self.heads(h)
reconstructions, codes = self.heads(h, f)
reconstruction_losses = torch.stack([F.mse_loss(r.reshape(b, s, c), px) for r in reconstructions])
r_follow = torch.arange(1, reconstruction_losses.shape[0]+1, device=x.device)
reconstruction_losses = (reconstruction_losses * r_follow / r_follow.shape[0])
@ -154,6 +159,6 @@ def register_instrument_quantizer(opt_net, opt):
if __name__ == '__main__':
inp = torch.randn((4,256,200))
inp = torch.randn((4,256,200)).clamp(-1,1)
model = InstrumentQuantizer(256, 512, 4096, 8, 3)
model(inp)