Try out dropout norm

This commit is contained in:
James Betker 2021-06-07 11:33:33 -06:00
parent 6c6e82406e
commit eda796985b
2 changed files with 122 additions and 14 deletions

View File

@ -10,8 +10,9 @@
import torch
import torch.nn as nn
import torch.distributed as dist
from models.switched_conv.switched_conv_hard_routing import HardRoutingGate
from models.switched_conv.switched_conv_hard_routing import SwitchNorm, RouteTop1
from trainer.networks import register_model
@ -110,9 +111,78 @@ class ResNetTail(nn.Module):
return output
class DropoutNorm(SwitchNorm):
def __init__(self, group_size, dropout_rate, accumulator_size=256):
super().__init__(group_size, accumulator_size)
self.accumulator_desired_size = accumulator_size
self.group_size = group_size
self.dropout_rate = dropout_rate
self.register_buffer("accumulator_index", torch.zeros(1, dtype=torch.long, device='cpu'))
self.register_buffer("accumulator_filled", torch.zeros(1, dtype=torch.long, device='cpu'))
self.register_buffer("accumulator", torch.zeros(accumulator_size, group_size))
def add_norm_to_buffer(self, x):
flatten_dims = [0] + [k+2 for k in range(len(x.shape)-2)]
flat = x.mean(dim=flatten_dims)
self.accumulator[self.accumulator_index] = flat.detach().clone()
self.accumulator_index += 1
if self.accumulator_index >= self.accumulator_desired_size:
self.accumulator_index *= 0
if self.accumulator_filled <= 0:
self.accumulator_filled += 1
# Input into forward is a switching tensor of shape (batch,groups,<misc>)
def forward(self, x: torch.Tensor):
assert len(x.shape) >= 2
if not self.training:
return x
# Only accumulate the "winning" switch slots.
mask = torch.nn.functional.one_hot(x.argmax(dim=1), num_classes=x.shape[1])
if len(x.shape) > 2:
mask = mask.permute(0, 3, 1, 2) # TODO: Make this more extensible.
xtop = torch.ones_like(x)
xtop[mask != 1] = 0
# Push the accumulator to the right device on the first iteration.
if self.accumulator.device != xtop.device:
self.accumulator = self.accumulator.to(xtop.device)
self.add_norm_to_buffer(xtop)
# Reduce across all distributed entities, if needed
if dist.is_available() and dist.is_initialized():
dist.all_reduce(self.accumulator, op=dist.ReduceOp.SUM)
self.accumulator /= dist.get_world_size()
# Compute the dropout probabilities. This module is a no-op before the accumulator is initialized.
if self.accumulator_filled > 0:
probs = torch.mean(self.accumulator, dim=0) * self.dropout_rate
bs, br = x.shape[:2]
drop = torch.rand((bs, br), device=x.device) > probs.unsqueeze(0)
# Ensure that there is always at least one switch left un-dropped out
fix_blank = (drop.sum(dim=1, keepdim=True) == 0).repeat(1, br)
drop = drop.logical_or(fix_blank)
x = drop * x
return x
class HardRoutingGate(nn.Module):
def __init__(self, breadth, dropout_rate=.8):
super().__init__()
self.norm = DropoutNorm(breadth, dropout_rate, accumulator_size=2)
def forward(self, x):
soft = self.norm(nn.functional.softmax(x, dim=1))
return RouteTop1.apply(soft)
return soft
class ResNet(nn.Module):
def __init__(self, block, num_block, num_classes=100, num_tails=8, dropout_rate=.2):
def __init__(self, block, num_block, num_classes=100, num_tails=8):
super().__init__()
self.in_channels = 32
self.conv1 = nn.Sequential(
@ -125,8 +195,7 @@ class ResNet(nn.Module):
self.tails = nn.ModuleList([ResNetTail(block, num_block, 256) for _ in range(num_tails)])
self.selector = ResNetTail(block, num_block, num_tails)
self.selector_gate = nn.Linear(256, 1)
self.gate = HardRoutingGate(num_tails, hard_en=True)
self.dropout_rate = dropout_rate
self.gate = HardRoutingGate(num_tails)
self.final_linear = nn.Linear(256, num_classes)
def _make_layer(self, block, out_channels, num_blocks, stride):
@ -137,7 +206,7 @@ class ResNet(nn.Module):
self.in_channels = out_channels * block.expansion
return nn.Sequential(*layers)
def forward(self, x, coarse_label):
def forward(self, x, coarse_label, return_selector=False):
output = self.conv1(x)
output = self.conv2_x(output)
output = self.conv3_x(output)
@ -149,16 +218,12 @@ class ResNet(nn.Module):
query = self.selector(output).unsqueeze(2)
selector = self.selector_gate(query * keys).squeeze(-1)
if self.training and self.dropout_rate > 0:
bs, br = selector.shape
drop = torch.rand((bs, br), device=x.device) > self.dropout_rate
# Ensure that there is always at least one switch left un-dropped out
fix_blank = (drop.sum(dim=1, keepdim=True) == 0).repeat(1, br)
drop = drop.logical_or(fix_blank)
selector = drop * selector
selector = self.gate(selector)
values = self.final_linear(selector.unsqueeze(-1) * keys)
if return_selector:
return values.sum(dim=1), selector
else:
return values.sum(dim=1)
#bs = output.shape[0]
@ -193,6 +258,7 @@ def resnet152():
if __name__ == '__main__':
model = ResNet(BasicBlock, [2,2,2,2])
for j in range(10):
v = model(torch.randn(256,3,32,32), None)
print(v.shape)
l = nn.MSELoss()(v, torch.randn_like(v))

View File

@ -0,0 +1,42 @@
import numpy
import torch
from torch.utils.data import DataLoader
from data.torch_dataset import TorchDataset
from models.classifiers.cifar_resnet_branched import ResNet
from models.classifiers.cifar_resnet_branched import BasicBlock
if __name__ == '__main__':
dopt = {
'flip': True,
'crop_sz': None,
'dataset': 'cifar100',
'image_size': 32,
'normalize': False,
'kwargs': {
'root': 'E:\\4k6k\\datasets\\images\\cifar100',
'download': True
}
}
set = TorchDataset(dopt)
loader = DataLoader(set, num_workers=0, batch_size=32)
model = ResNet(BasicBlock, [2, 2, 2, 2])
model.load_state_dict(torch.load('C:\\Users\\jbetk\\Downloads\\cifar_hardsw_85000.pth'))
model.eval()
bins = [[] for _ in range(8)]
for i, batch in enumerate(loader):
logits, selector = model(batch['hq'], coarse_label=None, return_selector=True)
for k, s in enumerate(selector):
for j, b in enumerate(s):
if b:
bins[j].append(batch['labels'][k].item())
if i > 10:
break
import matplotlib.pyplot as plt
fig, axs = plt.subplots(3,3)
for i in range(8):
axs[i%3, i//3].hist(numpy.asarray(bins[i]))
plt.show()
print('hi')