Try out dropout norm
This commit is contained in:
parent
6c6e82406e
commit
eda796985b
|
@ -10,8 +10,9 @@
|
|||
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import torch.distributed as dist
|
||||
|
||||
from models.switched_conv.switched_conv_hard_routing import HardRoutingGate
|
||||
from models.switched_conv.switched_conv_hard_routing import SwitchNorm, RouteTop1
|
||||
from trainer.networks import register_model
|
||||
|
||||
|
||||
|
@ -110,9 +111,78 @@ class ResNetTail(nn.Module):
|
|||
return output
|
||||
|
||||
|
||||
class DropoutNorm(SwitchNorm):
|
||||
def __init__(self, group_size, dropout_rate, accumulator_size=256):
|
||||
super().__init__(group_size, accumulator_size)
|
||||
self.accumulator_desired_size = accumulator_size
|
||||
self.group_size = group_size
|
||||
self.dropout_rate = dropout_rate
|
||||
self.register_buffer("accumulator_index", torch.zeros(1, dtype=torch.long, device='cpu'))
|
||||
self.register_buffer("accumulator_filled", torch.zeros(1, dtype=torch.long, device='cpu'))
|
||||
self.register_buffer("accumulator", torch.zeros(accumulator_size, group_size))
|
||||
|
||||
def add_norm_to_buffer(self, x):
|
||||
flatten_dims = [0] + [k+2 for k in range(len(x.shape)-2)]
|
||||
flat = x.mean(dim=flatten_dims)
|
||||
|
||||
self.accumulator[self.accumulator_index] = flat.detach().clone()
|
||||
self.accumulator_index += 1
|
||||
if self.accumulator_index >= self.accumulator_desired_size:
|
||||
self.accumulator_index *= 0
|
||||
if self.accumulator_filled <= 0:
|
||||
self.accumulator_filled += 1
|
||||
|
||||
# Input into forward is a switching tensor of shape (batch,groups,<misc>)
|
||||
def forward(self, x: torch.Tensor):
|
||||
assert len(x.shape) >= 2
|
||||
|
||||
if not self.training:
|
||||
return x
|
||||
|
||||
# Only accumulate the "winning" switch slots.
|
||||
mask = torch.nn.functional.one_hot(x.argmax(dim=1), num_classes=x.shape[1])
|
||||
if len(x.shape) > 2:
|
||||
mask = mask.permute(0, 3, 1, 2) # TODO: Make this more extensible.
|
||||
xtop = torch.ones_like(x)
|
||||
xtop[mask != 1] = 0
|
||||
|
||||
# Push the accumulator to the right device on the first iteration.
|
||||
if self.accumulator.device != xtop.device:
|
||||
self.accumulator = self.accumulator.to(xtop.device)
|
||||
self.add_norm_to_buffer(xtop)
|
||||
|
||||
# Reduce across all distributed entities, if needed
|
||||
if dist.is_available() and dist.is_initialized():
|
||||
dist.all_reduce(self.accumulator, op=dist.ReduceOp.SUM)
|
||||
self.accumulator /= dist.get_world_size()
|
||||
|
||||
# Compute the dropout probabilities. This module is a no-op before the accumulator is initialized.
|
||||
if self.accumulator_filled > 0:
|
||||
probs = torch.mean(self.accumulator, dim=0) * self.dropout_rate
|
||||
bs, br = x.shape[:2]
|
||||
drop = torch.rand((bs, br), device=x.device) > probs.unsqueeze(0)
|
||||
# Ensure that there is always at least one switch left un-dropped out
|
||||
fix_blank = (drop.sum(dim=1, keepdim=True) == 0).repeat(1, br)
|
||||
drop = drop.logical_or(fix_blank)
|
||||
x = drop * x
|
||||
|
||||
return x
|
||||
|
||||
|
||||
class HardRoutingGate(nn.Module):
|
||||
def __init__(self, breadth, dropout_rate=.8):
|
||||
super().__init__()
|
||||
self.norm = DropoutNorm(breadth, dropout_rate, accumulator_size=2)
|
||||
|
||||
def forward(self, x):
|
||||
soft = self.norm(nn.functional.softmax(x, dim=1))
|
||||
return RouteTop1.apply(soft)
|
||||
return soft
|
||||
|
||||
|
||||
class ResNet(nn.Module):
|
||||
|
||||
def __init__(self, block, num_block, num_classes=100, num_tails=8, dropout_rate=.2):
|
||||
def __init__(self, block, num_block, num_classes=100, num_tails=8):
|
||||
super().__init__()
|
||||
self.in_channels = 32
|
||||
self.conv1 = nn.Sequential(
|
||||
|
@ -125,8 +195,7 @@ class ResNet(nn.Module):
|
|||
self.tails = nn.ModuleList([ResNetTail(block, num_block, 256) for _ in range(num_tails)])
|
||||
self.selector = ResNetTail(block, num_block, num_tails)
|
||||
self.selector_gate = nn.Linear(256, 1)
|
||||
self.gate = HardRoutingGate(num_tails, hard_en=True)
|
||||
self.dropout_rate = dropout_rate
|
||||
self.gate = HardRoutingGate(num_tails)
|
||||
self.final_linear = nn.Linear(256, num_classes)
|
||||
|
||||
def _make_layer(self, block, out_channels, num_blocks, stride):
|
||||
|
@ -137,7 +206,7 @@ class ResNet(nn.Module):
|
|||
self.in_channels = out_channels * block.expansion
|
||||
return nn.Sequential(*layers)
|
||||
|
||||
def forward(self, x, coarse_label):
|
||||
def forward(self, x, coarse_label, return_selector=False):
|
||||
output = self.conv1(x)
|
||||
output = self.conv2_x(output)
|
||||
output = self.conv3_x(output)
|
||||
|
@ -149,16 +218,12 @@ class ResNet(nn.Module):
|
|||
|
||||
query = self.selector(output).unsqueeze(2)
|
||||
selector = self.selector_gate(query * keys).squeeze(-1)
|
||||
if self.training and self.dropout_rate > 0:
|
||||
bs, br = selector.shape
|
||||
drop = torch.rand((bs, br), device=x.device) > self.dropout_rate
|
||||
# Ensure that there is always at least one switch left un-dropped out
|
||||
fix_blank = (drop.sum(dim=1, keepdim=True) == 0).repeat(1, br)
|
||||
drop = drop.logical_or(fix_blank)
|
||||
selector = drop * selector
|
||||
selector = self.gate(selector)
|
||||
values = self.final_linear(selector.unsqueeze(-1) * keys)
|
||||
|
||||
if return_selector:
|
||||
return values.sum(dim=1), selector
|
||||
else:
|
||||
return values.sum(dim=1)
|
||||
|
||||
#bs = output.shape[0]
|
||||
|
@ -193,6 +258,7 @@ def resnet152():
|
|||
|
||||
if __name__ == '__main__':
|
||||
model = ResNet(BasicBlock, [2,2,2,2])
|
||||
for j in range(10):
|
||||
v = model(torch.randn(256,3,32,32), None)
|
||||
print(v.shape)
|
||||
l = nn.MSELoss()(v, torch.randn_like(v))
|
||||
|
|
42
codes/scripts/cifar100_untangle.py
Normal file
42
codes/scripts/cifar100_untangle.py
Normal file
|
@ -0,0 +1,42 @@
|
|||
import numpy
|
||||
import torch
|
||||
from torch.utils.data import DataLoader
|
||||
|
||||
from data.torch_dataset import TorchDataset
|
||||
from models.classifiers.cifar_resnet_branched import ResNet
|
||||
from models.classifiers.cifar_resnet_branched import BasicBlock
|
||||
|
||||
if __name__ == '__main__':
|
||||
dopt = {
|
||||
'flip': True,
|
||||
'crop_sz': None,
|
||||
'dataset': 'cifar100',
|
||||
'image_size': 32,
|
||||
'normalize': False,
|
||||
'kwargs': {
|
||||
'root': 'E:\\4k6k\\datasets\\images\\cifar100',
|
||||
'download': True
|
||||
}
|
||||
}
|
||||
set = TorchDataset(dopt)
|
||||
loader = DataLoader(set, num_workers=0, batch_size=32)
|
||||
model = ResNet(BasicBlock, [2, 2, 2, 2])
|
||||
model.load_state_dict(torch.load('C:\\Users\\jbetk\\Downloads\\cifar_hardsw_85000.pth'))
|
||||
model.eval()
|
||||
|
||||
bins = [[] for _ in range(8)]
|
||||
for i, batch in enumerate(loader):
|
||||
logits, selector = model(batch['hq'], coarse_label=None, return_selector=True)
|
||||
for k, s in enumerate(selector):
|
||||
for j, b in enumerate(s):
|
||||
if b:
|
||||
bins[j].append(batch['labels'][k].item())
|
||||
if i > 10:
|
||||
break
|
||||
|
||||
import matplotlib.pyplot as plt
|
||||
fig, axs = plt.subplots(3,3)
|
||||
for i in range(8):
|
||||
axs[i%3, i//3].hist(numpy.asarray(bins[i]))
|
||||
plt.show()
|
||||
print('hi')
|
Loading…
Reference in New Issue
Block a user