diff --git a/codes/models/archs/discriminator_vgg_arch.py b/codes/models/archs/discriminator_vgg_arch.py index 67755d9a..81af1f6b 100644 --- a/codes/models/archs/discriminator_vgg_arch.py +++ b/codes/models/archs/discriminator_vgg_arch.py @@ -118,7 +118,7 @@ class Discriminator_VGG_128_GN(nn.Module): self.bn5_0 = nn.GroupNorm(8, nf * 8, affine=True) self.conv5_1 = nn.Conv2d(nf * 8, nf * 8, 4, 2, 1, bias=False) self.bn5_1 = nn.GroupNorm(8, nf * 8, affine=True) - input_img_factor = input_img_factor // 2 + input_img_factor = input_img_factor / 2 final_nf = nf * 8 # activation function diff --git a/codes/scripts/extract_subimages_with_ref.py b/codes/scripts/extract_subimages_with_ref.py index ad8fb316..7bde324c 100644 --- a/codes/scripts/extract_subimages_with_ref.py +++ b/codes/scripts/extract_subimages_with_ref.py @@ -13,14 +13,14 @@ import torch def main(): split_img = False opt = {} - opt['n_thread'] = 8 + opt['n_thread'] = 16 opt['compression_level'] = 90 # JPEG compression quality rating. # CV_IMWRITE_PNG_COMPRESSION from 0 to 9. A higher value means a smaller size and longer # compression time. If read raw images during training, use 0 for faster IO speed. opt['dest'] = 'file' - opt['input_folder'] = 'F:\\4k6k\\datasets\\ns_images\\fkaw\\images' - opt['save_folder'] = 'F:\\4k6k\\datasets\\ns_images\\vixen\\512_with_ref_and_fkaw' + opt['input_folder'] = 'F:\\4k6k\\datasets\\ns_images\\imagesets\\imgset2' + opt['save_folder'] = 'F:\\4k6k\\datasets\\ns_images\\vixen\\USELESS_DELETE_ME' opt['crop_sz'] = [1024, 2048] # the size of each sub-image opt['step'] = [1024, 2048] # step of the sliding crop window opt['thres_sz'] = 512 # size threshold