re-add distributed collect to clvp
This commit is contained in:
parent
545453077e
commit
efa737b685
166
codes/models/classifiers/twin_cifar_resnet.py
Normal file
166
codes/models/classifiers/twin_cifar_resnet.py
Normal file
|
@ -0,0 +1,166 @@
|
|||
"""resnet in pytorch
|
||||
|
||||
|
||||
|
||||
[1] Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun.
|
||||
|
||||
Deep Residual Learning for Image Recognition
|
||||
https://arxiv.org/abs/1512.03385v1
|
||||
"""
|
||||
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
|
||||
from trainer.networks import register_model
|
||||
|
||||
|
||||
class BasicBlock(nn.Module):
|
||||
"""Basic Block for resnet 18 and resnet 34
|
||||
|
||||
"""
|
||||
|
||||
#BasicBlock and BottleNeck block
|
||||
#have different output size
|
||||
#we use class attribute expansion
|
||||
#to distinct
|
||||
expansion = 1
|
||||
|
||||
def __init__(self, in_channels, out_channels, stride=1):
|
||||
super().__init__()
|
||||
|
||||
#residual function
|
||||
self.residual_function = nn.Sequential(
|
||||
nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=stride, padding=1, bias=False),
|
||||
nn.BatchNorm2d(out_channels),
|
||||
nn.ReLU(inplace=True),
|
||||
nn.Conv2d(out_channels, out_channels * BasicBlock.expansion, kernel_size=3, padding=1, bias=False),
|
||||
nn.BatchNorm2d(out_channels * BasicBlock.expansion)
|
||||
)
|
||||
|
||||
#shortcut
|
||||
self.shortcut = nn.Sequential()
|
||||
|
||||
#the shortcut output dimension is not the same with residual function
|
||||
#use 1*1 convolution to match the dimension
|
||||
if stride != 1 or in_channels != BasicBlock.expansion * out_channels:
|
||||
self.shortcut = nn.Sequential(
|
||||
nn.Conv2d(in_channels, out_channels * BasicBlock.expansion, kernel_size=1, stride=stride, bias=False),
|
||||
nn.BatchNorm2d(out_channels * BasicBlock.expansion)
|
||||
)
|
||||
|
||||
def forward(self, x):
|
||||
return nn.ReLU(inplace=True)(self.residual_function(x) + self.shortcut(x))
|
||||
|
||||
class BottleNeck(nn.Module):
|
||||
"""Residual block for resnet over 50 layers
|
||||
|
||||
"""
|
||||
expansion = 4
|
||||
def __init__(self, in_channels, out_channels, stride=1):
|
||||
super().__init__()
|
||||
self.residual_function = nn.Sequential(
|
||||
nn.Conv2d(in_channels, out_channels, kernel_size=1, bias=False),
|
||||
nn.BatchNorm2d(out_channels),
|
||||
nn.ReLU(inplace=True),
|
||||
nn.Conv2d(out_channels, out_channels, stride=stride, kernel_size=3, padding=1, bias=False),
|
||||
nn.BatchNorm2d(out_channels),
|
||||
nn.ReLU(inplace=True),
|
||||
nn.Conv2d(out_channels, out_channels * BottleNeck.expansion, kernel_size=1, bias=False),
|
||||
nn.BatchNorm2d(out_channels * BottleNeck.expansion),
|
||||
)
|
||||
|
||||
self.shortcut = nn.Sequential()
|
||||
|
||||
if stride != 1 or in_channels != out_channels * BottleNeck.expansion:
|
||||
self.shortcut = nn.Sequential(
|
||||
nn.Conv2d(in_channels, out_channels * BottleNeck.expansion, stride=stride, kernel_size=1, bias=False),
|
||||
nn.BatchNorm2d(out_channels * BottleNeck.expansion)
|
||||
)
|
||||
|
||||
def forward(self, x):
|
||||
return nn.ReLU(inplace=True)(self.residual_function(x) + self.shortcut(x))
|
||||
|
||||
class ResNet(nn.Module):
|
||||
|
||||
def __init__(self, block, num_block, num_classes=100):
|
||||
super().__init__()
|
||||
|
||||
self.in_channels = 32
|
||||
|
||||
self.conv1 = nn.Sequential(
|
||||
nn.Conv2d(3, 32, kernel_size=3, padding=1, bias=False),
|
||||
nn.BatchNorm2d(32),
|
||||
nn.ReLU(inplace=True))
|
||||
#we use a different inputsize than the original paper
|
||||
#so conv2_x's stride is 1
|
||||
self.conv2_x = self._make_layer(block, 32, num_block[0], 1)
|
||||
self.conv3_x = self._make_layer(block, 64, num_block[1], 2)
|
||||
self.conv4_x = self._make_layer(block, 128, num_block[2], 2)
|
||||
self.conv5_x = self._make_layer(block, 256, num_block[3], 2)
|
||||
self.avgpool = nn.AdaptiveAvgPool2d((1, 1))
|
||||
self.fc = nn.Linear(256 * block.expansion, num_classes)
|
||||
|
||||
def _make_layer(self, block, out_channels, num_blocks, stride):
|
||||
"""make resnet layers(by layer i didnt mean this 'layer' was the
|
||||
same as a neuron netowork layer, ex. conv layer), one layer may
|
||||
contain more than one residual block
|
||||
|
||||
Args:
|
||||
block: block type, basic block or bottle neck block
|
||||
out_channels: output depth channel number of this layer
|
||||
num_blocks: how many blocks per layer
|
||||
stride: the stride of the first block of this layer
|
||||
|
||||
Return:
|
||||
return a resnet layer
|
||||
"""
|
||||
|
||||
# we have num_block blocks per layer, the first block
|
||||
# could be 1 or 2, other blocks would always be 1
|
||||
strides = [stride] + [1] * (num_blocks - 1)
|
||||
layers = []
|
||||
for stride in strides:
|
||||
layers.append(block(self.in_channels, out_channels, stride))
|
||||
self.in_channels = out_channels * block.expansion
|
||||
|
||||
return nn.Sequential(*layers)
|
||||
|
||||
def forward(self, x):
|
||||
output = self.conv1(x)
|
||||
output = self.conv2_x(output)
|
||||
output = self.conv3_x(output)
|
||||
output = self.conv4_x(output)
|
||||
output = self.conv5_x(output)
|
||||
output = self.avgpool(output)
|
||||
output = output.view(output.size(0), -1)
|
||||
output = self.fc(output)
|
||||
|
||||
return output
|
||||
|
||||
@register_model
|
||||
def register_cifar_resnet18(opt_net, opt):
|
||||
""" return a ResNet 18 object
|
||||
"""
|
||||
return ResNet(BasicBlock, [2, 2, 2, 2])
|
||||
|
||||
def resnet34():
|
||||
""" return a ResNet 34 object
|
||||
"""
|
||||
return ResNet(BasicBlock, [3, 4, 6, 3])
|
||||
|
||||
def resnet50():
|
||||
""" return a ResNet 50 object
|
||||
"""
|
||||
return ResNet(BottleNeck, [3, 4, 6, 3])
|
||||
|
||||
def resnet101():
|
||||
""" return a ResNet 101 object
|
||||
"""
|
||||
return ResNet(BottleNeck, [3, 4, 23, 3])
|
||||
|
||||
def resnet152():
|
||||
""" return a ResNet 152 object
|
||||
"""
|
||||
return ResNet(BottleNeck, [3, 8, 36, 3])
|
||||
|
||||
|
|
@ -86,6 +86,7 @@ class CLVP(nn.Module):
|
|||
speech_enc_depth=6,
|
||||
speech_mask_percentage=0,
|
||||
latent_multiplier=4,
|
||||
distributed_collect=False,
|
||||
):
|
||||
super().__init__()
|
||||
latent_dim = latent_multiplier*model_dim
|
||||
|
@ -100,6 +101,7 @@ class CLVP(nn.Module):
|
|||
self.text_emb = nn.Embedding(num_text_tokens, model_dim)
|
||||
self.text_transformer = CollapsingTransformer(model_dim, latent_dim, transformer_heads, dropout, text_enc_depth, text_mask_percentage, use_rms_scaleshift_norm=True)
|
||||
self.to_text_latent = nn.Linear(latent_dim, latent_dim, bias=False)
|
||||
self.distributed_collect = distributed_collect
|
||||
|
||||
if mel_codes is None:
|
||||
self.speech_emb = nn.Conv1d(mel_channels, model_dim, kernel_size=5, padding=2)
|
||||
|
@ -144,6 +146,14 @@ class CLVP(nn.Module):
|
|||
text_latents, speech_latents = map(lambda t: F.normalize(t, p=2, dim=-1), (text_latents, speech_latents))
|
||||
temp = self.temperature.exp()
|
||||
|
||||
if self.distributed_collect:
|
||||
collective = [torch.zeros_like(text_latents) for _ in range(torch.distributed.get_world_size())]
|
||||
torch.all_gather(collective, text_latents)
|
||||
text_latents = torch.cat(collective, dim=0)
|
||||
collective = [torch.zeros_like(speech_latents) for _ in range(torch.distributed.get_world_size())]
|
||||
torch.all_gather(collective, speech_latents)
|
||||
speech_latents = torch.cat(collective, dim=0)
|
||||
|
||||
if not return_loss:
|
||||
sim = einsum('n d, n d -> n', text_latents, speech_latents) * temp
|
||||
return sim
|
||||
|
|
Loading…
Reference in New Issue
Block a user