tfdpc_v4
parametric efficiency improvements and lets try feeding the timestep into the conditioning encoder
This commit is contained in:
parent
42de09d983
commit
f12f0200d6
352
codes/models/audio/music/tfdpc_v4.py
Normal file
352
codes/models/audio/music/tfdpc_v4.py
Normal file
|
@ -0,0 +1,352 @@
|
|||
import itertools
|
||||
import os
|
||||
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import torch.nn.functional as F
|
||||
import torchaudio
|
||||
import torchvision
|
||||
|
||||
from models.diffusion.nn import timestep_embedding, normalization, zero_module, conv_nd, linear
|
||||
from models.diffusion.unet_diffusion import TimestepBlock
|
||||
from models.lucidrains.x_transformers import Encoder, Attention, RMSScaleShiftNorm, RotaryEmbedding, \
|
||||
FeedForward
|
||||
from trainer.networks import register_model
|
||||
from utils.util import checkpoint, print_network, load_audio
|
||||
|
||||
|
||||
class TimestepRotaryEmbedSequential(nn.Sequential, TimestepBlock):
|
||||
def forward(self, x, emb, rotary_emb):
|
||||
for layer in self:
|
||||
if isinstance(layer, TimestepBlock):
|
||||
x = layer(x, emb, rotary_emb)
|
||||
else:
|
||||
x = layer(x, rotary_emb)
|
||||
return x
|
||||
|
||||
|
||||
class SubBlock(nn.Module):
|
||||
def __init__(self, inp_dim, contraction_dim, heads, dropout, use_conv):
|
||||
super().__init__()
|
||||
self.attn = Attention(inp_dim, out_dim=contraction_dim, heads=heads, dim_head=contraction_dim//heads, causal=False, dropout=dropout)
|
||||
self.attnorm = nn.LayerNorm(contraction_dim)
|
||||
self.use_conv = use_conv
|
||||
if use_conv:
|
||||
self.ff = nn.Conv1d(inp_dim+contraction_dim, contraction_dim, kernel_size=3, padding=1)
|
||||
else:
|
||||
self.ff = FeedForward(inp_dim+contraction_dim, dim_out=contraction_dim, mult=2, dropout=dropout)
|
||||
self.ffnorm = nn.LayerNorm(contraction_dim)
|
||||
|
||||
def forward(self, x, rotary_emb):
|
||||
ah, _, _, _ = checkpoint(self.attn, x, None, None, None, None, None, rotary_emb)
|
||||
ah = F.gelu(self.attnorm(ah))
|
||||
h = torch.cat([ah, x], dim=-1)
|
||||
hf = checkpoint(self.ff, h.permute(0,2,1) if self.use_conv else h)
|
||||
hf = F.gelu(self.ffnorm(hf.permute(0,2,1) if self.use_conv else hf))
|
||||
h = torch.cat([h, hf], dim=-1)
|
||||
return h
|
||||
|
||||
|
||||
class ConcatAttentionBlock(TimestepBlock):
|
||||
def __init__(self, trunk_dim, contraction_dim, time_embed_dim, cond_dim_in, cond_dim_hidden, heads, dropout, cond_projection=True, use_conv=False):
|
||||
super().__init__()
|
||||
self.prenorm = RMSScaleShiftNorm(trunk_dim, embed_dim=time_embed_dim, bias=False)
|
||||
if cond_projection:
|
||||
self.tdim = trunk_dim+cond_dim_hidden
|
||||
self.cond_project = nn.Linear(cond_dim_in, cond_dim_hidden)
|
||||
else:
|
||||
self.tdim = trunk_dim
|
||||
self.block1 = SubBlock(self.tdim, contraction_dim, heads, dropout, use_conv)
|
||||
self.block2 = SubBlock(self.tdim+contraction_dim*2, contraction_dim, heads, dropout, use_conv)
|
||||
self.out = nn.Linear(contraction_dim*4, trunk_dim, bias=False)
|
||||
self.out.weight.data.zero_()
|
||||
|
||||
def forward(self, x, cond, timestep_emb, rotary_emb):
|
||||
h = self.prenorm(x, norm_scale_shift_inp=timestep_emb)
|
||||
if hasattr(self, 'cond_project'):
|
||||
cond = self.cond_project(cond)
|
||||
h = torch.cat([h, cond], dim=-1)
|
||||
h = self.block1(h, rotary_emb)
|
||||
h = self.block2(h, rotary_emb)
|
||||
h = self.out(h[:,:,self.tdim:])
|
||||
return h + x
|
||||
|
||||
|
||||
class ConditioningEncoder(nn.Module):
|
||||
def __init__(self,
|
||||
cond_dim,
|
||||
embedding_dim,
|
||||
time_embed_dim,
|
||||
attn_blocks=6,
|
||||
num_attn_heads=8,
|
||||
dropout=.1,
|
||||
do_checkpointing=False):
|
||||
super().__init__()
|
||||
attn = []
|
||||
self.init = nn.Conv1d(cond_dim, embedding_dim, kernel_size=1)
|
||||
self.time_proj = nn.Linear(time_embed_dim, embedding_dim)
|
||||
self.attn = Encoder(
|
||||
dim=embedding_dim,
|
||||
depth=attn_blocks,
|
||||
heads=num_attn_heads,
|
||||
ff_dropout=dropout,
|
||||
attn_dropout=dropout,
|
||||
use_rmsnorm=True,
|
||||
ff_glu=True,
|
||||
rotary_pos_emb=True,
|
||||
zero_init_branch_output=True,
|
||||
ff_mult=2,
|
||||
)
|
||||
self.dim = embedding_dim
|
||||
self.do_checkpointing = do_checkpointing
|
||||
|
||||
def forward(self, x, time_emb):
|
||||
h = self.init(x).permute(0,2,1)
|
||||
time_enc = self.time_proj(time_emb)
|
||||
h = torch.cat([time_enc.unsqueeze(1), h], dim=1)
|
||||
h = self.attn(h).permute(0,2,1)
|
||||
return h.mean(dim=2).unsqueeze(1)
|
||||
|
||||
|
||||
class TransformerDiffusionWithPointConditioning(nn.Module):
|
||||
"""
|
||||
A diffusion model composed entirely of stacks of transformer layers. Why would you do it any other way?
|
||||
"""
|
||||
def __init__(
|
||||
self,
|
||||
in_channels=256,
|
||||
out_channels=512, # mean and variance
|
||||
model_channels=1024,
|
||||
contraction_dim=256,
|
||||
time_embed_dim=256,
|
||||
num_layers=8,
|
||||
rotary_emb_dim=32,
|
||||
input_cond_dim=1024,
|
||||
num_heads=8,
|
||||
dropout=0,
|
||||
use_fp16=False,
|
||||
# Parameters for regularization.
|
||||
unconditioned_percentage=.1, # This implements a mechanism similar to what is used in classifier-free training.
|
||||
):
|
||||
super().__init__()
|
||||
|
||||
self.in_channels = in_channels
|
||||
self.model_channels = model_channels
|
||||
self.time_embed_dim = time_embed_dim
|
||||
self.out_channels = out_channels
|
||||
self.dropout = dropout
|
||||
self.unconditioned_percentage = unconditioned_percentage
|
||||
self.enable_fp16 = use_fp16
|
||||
|
||||
self.inp_block = conv_nd(1, in_channels, model_channels, 3, 1, 1)
|
||||
self.conditioning_encoder = ConditioningEncoder(256, model_channels, time_embed_dim)
|
||||
|
||||
self.time_embed = nn.Sequential(
|
||||
linear(time_embed_dim, time_embed_dim),
|
||||
nn.SiLU(),
|
||||
linear(time_embed_dim, time_embed_dim),
|
||||
)
|
||||
|
||||
self.unconditioned_embedding = nn.Parameter(torch.randn(1,1,model_channels))
|
||||
self.rotary_embeddings = RotaryEmbedding(rotary_emb_dim)
|
||||
self.layers = TimestepRotaryEmbedSequential(*[ConcatAttentionBlock(model_channels,
|
||||
contraction_dim,
|
||||
time_embed_dim,
|
||||
cond_dim_in=input_cond_dim,
|
||||
cond_dim_hidden=input_cond_dim//2,
|
||||
heads=num_heads,
|
||||
dropout=dropout,
|
||||
cond_projection=(k % 3 == 0),
|
||||
use_conv=(k % 3 != 0),
|
||||
) for k in range(num_layers)])
|
||||
|
||||
self.out = nn.Sequential(
|
||||
normalization(model_channels),
|
||||
nn.SiLU(),
|
||||
zero_module(conv_nd(1, model_channels, out_channels, 3, padding=1)),
|
||||
)
|
||||
|
||||
self.debug_codes = {}
|
||||
|
||||
def get_grad_norm_parameter_groups(self):
|
||||
attn1 = list(itertools.chain.from_iterable([lyr.block1.attn.parameters() for lyr in self.layers]))
|
||||
attn2 = list(itertools.chain.from_iterable([lyr.block2.attn.parameters() for lyr in self.layers]))
|
||||
ff1 = list(itertools.chain.from_iterable([lyr.block1.ff.parameters() for lyr in self.layers]))
|
||||
ff2 = list(itertools.chain.from_iterable([lyr.block2.ff.parameters() for lyr in self.layers]))
|
||||
blkout_layers = list(itertools.chain.from_iterable([lyr.out.parameters() for lyr in self.layers]))
|
||||
groups = {
|
||||
'prenorms': list(itertools.chain.from_iterable([lyr.prenorm.parameters() for lyr in self.layers])),
|
||||
'blk1_attention_layers': attn1,
|
||||
'blk2_attention_layers': attn2,
|
||||
'attention_layers': attn1 + attn2,
|
||||
'blk1_ff_layers': ff1,
|
||||
'blk2_ff_layers': ff2,
|
||||
'ff_layers': ff1 + ff2,
|
||||
'block_out_layers': blkout_layers,
|
||||
'rotary_embeddings': list(self.rotary_embeddings.parameters()),
|
||||
'out': list(self.out.parameters()),
|
||||
'x_proj': list(self.inp_block.parameters()),
|
||||
'layers': list(self.layers.parameters()),
|
||||
'time_embed': list(self.time_embed.parameters()),
|
||||
'conditioning_encoder': list(self.conditioning_encoder.parameters()),
|
||||
}
|
||||
return groups
|
||||
|
||||
def forward(self, x, timesteps, conditioning_input, conditioning_free=False):
|
||||
unused_params = []
|
||||
|
||||
time_emb = self.time_embed(timestep_embedding(timesteps, self.time_embed_dim))
|
||||
cond_enc = self.conditioning_encoder(conditioning_input, time_emb)
|
||||
|
||||
if conditioning_free:
|
||||
cond = self.unconditioned_embedding
|
||||
else:
|
||||
cond = cond_enc
|
||||
# Mask out the conditioning branch for whole batch elements, implementing something similar to classifier-free guidance.
|
||||
if self.training and self.unconditioned_percentage > 0:
|
||||
unconditioned_batches = torch.rand((cond.shape[0], 1, 1),
|
||||
device=cond.device) < self.unconditioned_percentage
|
||||
cond = torch.where(unconditioned_batches, self.unconditioned_embedding.repeat(cond.shape[0], 1, 1), cond)
|
||||
unused_params.append(self.unconditioned_embedding)
|
||||
cond = cond.repeat(1,x.shape[-1],1)
|
||||
|
||||
with torch.autocast(x.device.type, enabled=self.enable_fp16):
|
||||
x = self.inp_block(x).permute(0,2,1)
|
||||
|
||||
rotary_pos_emb = self.rotary_embeddings(x.shape[1]+1, x.device)
|
||||
for layer in self.layers:
|
||||
x = checkpoint(layer, x, cond, time_emb, rotary_pos_emb)
|
||||
|
||||
x = x.float().permute(0,2,1)
|
||||
out = self.out(x)
|
||||
|
||||
# Involve probabilistic or possibly unused parameters in loss so we don't get DDP errors.
|
||||
extraneous_addition = 0
|
||||
for p in unused_params:
|
||||
extraneous_addition = extraneous_addition + p.mean()
|
||||
out = out + extraneous_addition * 0
|
||||
|
||||
return out
|
||||
|
||||
def before_step(self, step):
|
||||
scaled_grad_parameters = list(itertools.chain.from_iterable([lyr.out.parameters() for lyr in self.diff.layers])) + \
|
||||
list(itertools.chain.from_iterable([lyr.prenorm.parameters() for lyr in self.diff.layers]))
|
||||
# Scale back the gradients of the blkout and prenorm layers by a constant factor. These get two orders of magnitudes
|
||||
# higher gradients. Ideally we would use parameter groups, but ZeroRedundancyOptimizer makes this trickier than
|
||||
# directly fiddling with the gradients.
|
||||
for p in scaled_grad_parameters:
|
||||
if hasattr(p, 'grad') and p.grad is not None:
|
||||
p.grad *= .2
|
||||
|
||||
|
||||
@register_model
|
||||
def register_tfdpc4(opt_net, opt):
|
||||
return TransformerDiffusionWithPointConditioning(**opt_net['kwargs'])
|
||||
|
||||
|
||||
def test_cheater_model():
|
||||
clip = torch.randn(2, 256, 400)
|
||||
cl = torch.randn(2, 256, 400)
|
||||
ts = torch.LongTensor([600, 600])
|
||||
|
||||
# For music:
|
||||
model = TransformerDiffusionWithPointConditioning(in_channels=256, out_channels=512, model_channels=1024,
|
||||
contraction_dim=384, num_heads=6, num_layers=18, dropout=0,
|
||||
unconditioned_percentage=.4)
|
||||
print_network(model)
|
||||
o = model(clip, ts, cl)
|
||||
pg = model.get_grad_norm_parameter_groups()
|
||||
def prmsz(lp):
|
||||
sz = 0
|
||||
for p in lp:
|
||||
q = 1
|
||||
for s in p.shape:
|
||||
q *= s
|
||||
sz += q
|
||||
return sz
|
||||
for k, v in pg.items():
|
||||
print(f'{k}: {prmsz(v)/1000000}')
|
||||
|
||||
|
||||
def inference_tfdpc4_with_cheater():
|
||||
with torch.no_grad():
|
||||
os.makedirs('results/tfdpc_v3', exist_ok=True)
|
||||
|
||||
#length = 40 * 22050 // 256 // 16
|
||||
samples = {'electronica1': load_audio('Y:\\split\\yt-music-eval\\00001.wav', 22050),
|
||||
'electronica2': load_audio('Y:\\split\\yt-music-eval\\00272.wav', 22050),
|
||||
'e_guitar': load_audio('Y:\\split\\yt-music-eval\\00227.wav', 22050),
|
||||
'creep': load_audio('Y:\\separated\\bt-music-3\\[2007] MTV Unplugged (Live) (Japan Edition)\\05 - Creep [Cover On Radiohead]\\00001\\no_vocals.wav', 22050),
|
||||
'rock1': load_audio('Y:\\separated\\bt-music-3\\2016 - Heal My Soul\\01 - Daze Of The Night\\00000\\no_vocals.wav', 22050),
|
||||
'kiss': load_audio('Y:\\separated\\bt-music-3\\KISS (2001) Box Set CD1\\02 Deuce (Demo Version)\\00000\\no_vocals.wav', 22050),
|
||||
'purp': load_audio('Y:\\separated\\bt-music-3\\Shades of Deep Purple\\11 Help (Alternate Take)\\00001\\no_vocals.wav', 22050),
|
||||
'western_stars': load_audio('Y:\\separated\\bt-music-3\\Western Stars\\01 Hitch Hikin\'\\00000\\no_vocals.wav', 22050),
|
||||
'silk': load_audio('Y:\\separated\\silk\\MonstercatSilkShowcase\\890\\00007\\no_vocals.wav', 22050),
|
||||
'long_electronica': load_audio('C:\\Users\\James\\Music\\longer_sample.wav', 22050),}
|
||||
for k, sample in samples.items():
|
||||
sample = sample.cuda()
|
||||
length = sample.shape[0]//256//16
|
||||
|
||||
model = TransformerDiffusionWithPointConditioning(in_channels=256, out_channels=512, model_channels=1024,
|
||||
contraction_dim=512, num_heads=8, num_layers=12, dropout=0,
|
||||
use_fp16=False, unconditioned_percentage=0).eval().cuda()
|
||||
model.load_state_dict(torch.load('x:/dlas/experiments/train_music_cheater_gen_v3/models/59000_generator_ema.pth'))
|
||||
|
||||
from trainer.injectors.audio_injectors import TorchMelSpectrogramInjector
|
||||
spec_fn = TorchMelSpectrogramInjector({'n_mel_channels': 256, 'mel_fmax': 11000, 'filter_length': 16000, 'true_normalization': True,
|
||||
'normalize': True, 'in': 'in', 'out': 'out'}, {}).cuda()
|
||||
ref_mel = spec_fn({'in': sample.unsqueeze(0)})['out']
|
||||
from trainer.injectors.audio_injectors import MusicCheaterLatentInjector
|
||||
cheater_encoder = MusicCheaterLatentInjector({'in': 'in', 'out': 'out'}, {}).cuda()
|
||||
ref_cheater = cheater_encoder({'in': ref_mel})['out']
|
||||
|
||||
from models.diffusion.respace import SpacedDiffusion
|
||||
from models.diffusion.respace import space_timesteps
|
||||
from models.diffusion.gaussian_diffusion import get_named_beta_schedule
|
||||
diffuser = SpacedDiffusion(use_timesteps=space_timesteps(4000, [128]), model_mean_type='epsilon',
|
||||
model_var_type='learned_range', loss_type='mse', betas=get_named_beta_schedule('linear', 4000),
|
||||
conditioning_free=True, conditioning_free_k=1)
|
||||
|
||||
# Conventional decoding method:
|
||||
gen_cheater = diffuser.ddim_sample_loop(model, (1,256,length), progress=True, model_kwargs={'true_cheater': ref_cheater})
|
||||
|
||||
# Guidance decoding method:
|
||||
#mask = torch.ones_like(ref_cheater)
|
||||
#mask[:,:,15:-15] = 0
|
||||
#gen_cheater = diffuser.p_sample_loop_with_guidance(model, ref_cheater, mask, model_kwargs={'true_cheater': ref_cheater})
|
||||
|
||||
# Just decode the ref.
|
||||
#gen_cheater = ref_cheater
|
||||
|
||||
from models.audio.music.transformer_diffusion12 import TransformerDiffusionWithCheaterLatent
|
||||
diffuser = SpacedDiffusion(use_timesteps=space_timesteps(4000, [32]), model_mean_type='epsilon',
|
||||
model_var_type='learned_range', loss_type='mse', betas=get_named_beta_schedule('linear', 4000),
|
||||
conditioning_free=True, conditioning_free_k=1)
|
||||
wrap = TransformerDiffusionWithCheaterLatent(in_channels=256, out_channels=512, model_channels=1024,
|
||||
contraction_dim=512, prenet_channels=1024, input_vec_dim=256,
|
||||
prenet_layers=6, num_heads=8, num_layers=16, new_code_expansion=True,
|
||||
dropout=0, unconditioned_percentage=0).eval().cuda()
|
||||
wrap.load_state_dict(torch.load('x:/dlas/experiments/train_music_diffusion_tfd_cheater_from_scratch/models/56500_generator_ema.pth'))
|
||||
cheater_to_mel = wrap.diff
|
||||
gen_mel = diffuser.ddim_sample_loop(cheater_to_mel, (1,256,gen_cheater.shape[-1]*16), progress=True,
|
||||
model_kwargs={'codes': gen_cheater.permute(0,2,1)})
|
||||
torchvision.utils.save_image((gen_mel + 1)/2, f'results/tfdpc_v3/{k}.png')
|
||||
|
||||
from utils.music_utils import get_mel2wav_v3_model
|
||||
m2w = get_mel2wav_v3_model().cuda()
|
||||
spectral_diffuser = SpacedDiffusion(use_timesteps=space_timesteps(4000, [32]), model_mean_type='epsilon',
|
||||
model_var_type='learned_range', loss_type='mse', betas=get_named_beta_schedule('linear', 4000),
|
||||
conditioning_free=True, conditioning_free_k=1)
|
||||
from trainer.injectors.audio_injectors import denormalize_mel
|
||||
gen_mel_denorm = denormalize_mel(gen_mel)
|
||||
output_shape = (1,16,gen_mel_denorm.shape[-1]*256//16)
|
||||
gen_wav = spectral_diffuser.ddim_sample_loop(m2w, output_shape, model_kwargs={'codes': gen_mel_denorm})
|
||||
from trainer.injectors.audio_injectors import pixel_shuffle_1d
|
||||
gen_wav = pixel_shuffle_1d(gen_wav, 16)
|
||||
|
||||
torchaudio.save(f'results/tfdpc_v3/{k}.wav', gen_wav.squeeze(1).cpu(), 22050)
|
||||
torchaudio.save(f'results/tfdpc_v3/{k}_ref.wav', sample.unsqueeze(0).cpu(), 22050)
|
||||
|
||||
if __name__ == '__main__':
|
||||
test_cheater_model()
|
||||
#inference_tfdpc4_with_cheater()
|
|
@ -358,10 +358,13 @@ def register_unet_diffusion_waveform_gen3(opt_net, opt):
|
|||
|
||||
|
||||
if __name__ == '__main__':
|
||||
clip = torch.randn(2, 64, 880)
|
||||
clip = torch.randn(2, 4, 880)
|
||||
aligned_sequence = torch.randn(2,256,220)
|
||||
ts = torch.LongTensor([600, 600])
|
||||
model = DiffusionWaveformGen()
|
||||
model = DiffusionWaveformGen(in_channels=4, out_channels=8, model_channels=64, in_mel_channels=256,
|
||||
channel_mult=[1,2,4,6,8,16], num_res_blocks=[2,2,2,1,1,0], mid_resnet_depth=24,
|
||||
conditioning_dim_factor=8,
|
||||
token_conditioning_resolutions=[4,16], dropout=.1, time_embed_dim_multiplier=4)
|
||||
# Test with sequence aligned conditioning
|
||||
o = model(clip, ts, aligned_sequence)
|
||||
print_network(model)
|
||||
|
|
|
@ -10,6 +10,15 @@ def get_mel2wav_model():
|
|||
model.eval()
|
||||
return model
|
||||
|
||||
def get_mel2wav_v3_model():
|
||||
from models.audio.music.unet_diffusion_waveform_gen3 import DiffusionWaveformGen
|
||||
model = DiffusionWaveformGen(model_channels=256, in_channels=16, in_mel_channels=256, out_channels=32, channel_mult=[1,1.5,2,4],
|
||||
num_res_blocks=[2,1,1,0], mid_resnet_depth=24, token_conditioning_resolutions=[1,4],
|
||||
dropout=0, time_embed_dim_multiplier=1, unconditioned_percentage=0)
|
||||
model.load_state_dict(torch.load("../experiments/music_mel2wav_v3.pth", map_location=torch.device('cpu')))
|
||||
model.eval()
|
||||
return model
|
||||
|
||||
def get_music_codegen():
|
||||
from models.audio.mel2vec import ContrastiveTrainingWrapper
|
||||
model = ContrastiveTrainingWrapper(mel_input_channels=256, inner_dim=1024, layers=24, dropout=0,
|
||||
|
|
Loading…
Reference in New Issue
Block a user