asr_eval
This commit is contained in:
parent
ed6eae407f
commit
f1a0c21fb2
81
codes/scripts/asr_eval.py
Normal file
81
codes/scripts/asr_eval.py
Normal file
|
@ -0,0 +1,81 @@
|
|||
import os
|
||||
import os.path as osp
|
||||
import logging
|
||||
import random
|
||||
import argparse
|
||||
|
||||
import torchvision
|
||||
|
||||
import utils
|
||||
import utils.options as option
|
||||
import utils.util as util
|
||||
from models.tacotron2.text import sequence_to_text
|
||||
from trainer.ExtensibleTrainer import ExtensibleTrainer
|
||||
from data import create_dataset, create_dataloader
|
||||
from tqdm import tqdm
|
||||
import torch
|
||||
import numpy as np
|
||||
from scipy.io import wavfile
|
||||
|
||||
|
||||
def forward_pass(model, data, output_dir, opt, b):
|
||||
with torch.no_grad():
|
||||
model.feed_data(data, 0)
|
||||
model.test()
|
||||
|
||||
if 'real_text' in opt['eval'].keys():
|
||||
real = data[opt['eval']['real_text']][0]
|
||||
print(f'{b} Real text: "{real}"')
|
||||
|
||||
pred_seq = model.eval_state[opt['eval']['gen_text']][0][0] # Grab first sequence, which should represent the most likely sequence.
|
||||
return sequence_to_text(pred_seq)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
# Set seeds
|
||||
torch.manual_seed(5555)
|
||||
random.seed(5555)
|
||||
np.random.seed(5555)
|
||||
|
||||
#### options
|
||||
torch.backends.cudnn.benchmark = True
|
||||
want_metrics = False
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument('-opt', type=str, help='Path to options YAML file.', default='../options/test_gpt_asr_mass.yml')
|
||||
opt = option.parse(parser.parse_args().opt, is_train=False)
|
||||
opt = option.dict_to_nonedict(opt)
|
||||
utils.util.loaded_options = opt
|
||||
|
||||
util.mkdirs(
|
||||
(path for key, path in opt['path'].items()
|
||||
if not key == 'experiments_root' and 'pretrain_model' not in key and 'resume' not in key))
|
||||
util.setup_logger('base', opt['path']['log'], 'test_' + opt['name'], level=logging.INFO,
|
||||
screen=True, tofile=True)
|
||||
logger = logging.getLogger('base')
|
||||
logger.info(option.dict2str(opt))
|
||||
|
||||
test_loaders = []
|
||||
for phase, dataset_opt in sorted(opt['datasets'].items()):
|
||||
test_set, collate_fn = create_dataset(dataset_opt, return_collate=True)
|
||||
test_loader = create_dataloader(test_set, dataset_opt, collate_fn=collate_fn)
|
||||
logger.info('Number of test texts in [{:s}]: {:d}'.format(dataset_opt['name'], len(test_set)))
|
||||
test_loaders.append(test_loader)
|
||||
|
||||
model = ExtensibleTrainer(opt)
|
||||
|
||||
batch = 0
|
||||
output = open('results.tsv', 'w')
|
||||
for test_loader in test_loaders:
|
||||
dataset_dir = opt['path']['results_root']
|
||||
util.mkdir(dataset_dir)
|
||||
|
||||
tq = tqdm(test_loader)
|
||||
for data in tq:
|
||||
if data['clip'].shape[-1] > opt['networks']['asr_gen']['kwargs']['max_mel_frames']*255:
|
||||
continue
|
||||
pred = forward_pass(model, data, dataset_dir, opt, batch)
|
||||
pred = pred.replace('_', '')
|
||||
output.write(f'{pred}\t{os.path.basename(data["path"][0])}')
|
||||
output.flush()
|
||||
batch += 1
|
||||
|
Loading…
Reference in New Issue
Block a user