Allow tecogan losses to compute at 32px

This commit is contained in:
James Betker 2020-10-26 11:09:55 -06:00
parent 629b968901
commit f857eb00a8

View File

@ -97,9 +97,15 @@ class RecurrentImageGeneratorSequenceInjector(Injector):
else:
input = extract_inputs_index(inputs, i)
with torch.no_grad() and autocast(enabled=False):
reduced_recurrent = F.interpolate(recurrent_input, scale_factor=1/self.scale, mode='bicubic')
flow_input = torch.stack([input[self.input_lq_index], reduced_recurrent], dim=2).float()
flowfield = F.interpolate(flow(flow_input), scale_factor=self.scale, mode='bicubic')
# This is a hack to workaround the fact that flownet2 cannot operate at resolutions < 64px. An assumption is
# made here that if you are operating at 4x scale, your inputs are 32px x 32px
if self.scale >= 4:
flow_input = F.interpolate(input[self.input_lq_index], scale_factor=self.scale//2, mode='bicubic')
else:
flow_input = input[self.input_lq_index]
reduced_recurrent = F.interpolate(recurrent_input, scale_factor=.5, mode='bicubic')
flow_input = torch.stack([flow_input, reduced_recurrent], dim=2).float()
flowfield = F.interpolate(flow(flow_input), scale_factor=2, mode='bicubic')
recurrent_input = self.resample(recurrent_input.float(), flowfield)
input[self.recurrent_index] = recurrent_input
if self.env['step'] % 50 == 0:
@ -122,9 +128,15 @@ class RecurrentImageGeneratorSequenceInjector(Injector):
input = extract_inputs_index(inputs, i)
with torch.no_grad():
with autocast(enabled=False):
reduced_recurrent = F.interpolate(recurrent_input, scale_factor=1 / self.scale, mode='bicubic')
flow_input = torch.stack([input[self.input_lq_index], reduced_recurrent], dim=2).float()
flowfield = F.interpolate(flow(flow_input), scale_factor=self.scale, mode='bicubic')
# This is a hack to workaround the fact that flownet2 cannot operate at resolutions < 64px. An assumption is
# made here that if you are operating at 4x scale, your inputs are 32px x 32px
if self.scale >= 4:
flow_input = F.interpolate(input[self.input_lq_index], scale_factor=self.scale//2, mode='bicubic')
else:
flow_input = input[self.input_lq_index]
reduced_recurrent = F.interpolate(recurrent_input, scale_factor=.5, mode='bicubic')
flow_input = torch.stack([flow_input, reduced_recurrent], dim=2).float()
flowfield = F.interpolate(flow(flow_input), scale_factor=2, mode='bicubic')
recurrent_input = self.resample(recurrent_input.float(), flowfield)
input[self.recurrent_index] = recurrent_input
if self.env['step'] % 50 == 0: