Use non-uniform noise in diffusion_tts6
This commit is contained in:
parent
f44b064c5e
commit
ff35d13b99
|
@ -381,7 +381,7 @@ class DiffusionTts(nn.Module):
|
||||||
assert lr_input is not None
|
assert lr_input is not None
|
||||||
if self.super_sampling_max_noising_factor > 0:
|
if self.super_sampling_max_noising_factor > 0:
|
||||||
noising_factor = random.uniform(0,self.super_sampling_max_noising_factor)
|
noising_factor = random.uniform(0,self.super_sampling_max_noising_factor)
|
||||||
lr_input = torch.rand_like(lr_input) * noising_factor + lr_input
|
lr_input = torch.randn_like(lr_input) * noising_factor + lr_input
|
||||||
lr_input = F.interpolate(lr_input, size=(x.shape[-1],), mode='nearest')
|
lr_input = F.interpolate(lr_input, size=(x.shape[-1],), mode='nearest')
|
||||||
x = torch.cat([x, lr_input], dim=1)
|
x = torch.cat([x, lr_input], dim=1)
|
||||||
|
|
||||||
|
|
Loading…
Reference in New Issue
Block a user