- Makes skip connections between the generator and discriminator more
extensible by adding additional configuration options for them and supporting
1 and 0 skips.
- Places the temp/ directory with sample images from the training process appear
in the training directory instead of the codes/ directory.
Model swapout is a feature where, at specified intervals,
a random D and G model will be swapped in place for the
one being trained. After a short period of time, this model
is swapped back out. This is intended to increase training
diversity.
This network is just a fixed (pre-trained) generator
that performs a corruption transformation that the
generator-in-training is expected to undo alongside
SR.
Add RRDBNetXL, which performs processing at multiple image sizes.
Add DiscResnet_passthrough, which allows passthrough of image at different sizes for discrimination.
Adjust the rest of the repo to allow generators that return more than just a single image.
This is a checkpoint of a set of long tests with reduced-complexity networks. Some takeaways:
1) A full GAN using the resnet discriminator does appear to converge, but the quality is capped.
2) Likewise, a combination GAN/feature loss does not converge. The feature loss is optimized but
the model appears unable to fight the discriminator, so the G-loss steadily increases.
Going forwards, I want to try some bigger models. In particular, I want to change the generator
to increase complexity and capacity. I also want to add skip connections between the
disc and generator.
This bad boy is for a workflow where you train a model on disjoint image sets to
downsample a "good" set of images like a "bad" set of images looks. You then
use that downsampler to generate a training set of paired images for supersampling.