import torch # Utility class that stores detached, named losses in a rotating buffer for smooth metric outputting. from torch import distributed class LossAccumulator: def __init__(self, buffer_sz=50): self.buffer_sz = buffer_sz self.buffers = {} self.counters = {} def add_loss(self, name, tensor): if name not in self.buffers.keys(): if "_histogram" in name: tensor = torch.flatten(tensor.detach().cpu()) self.buffers[name] = (0, torch.zeros( (self.buffer_sz, tensor.shape[0])), False) else: self.buffers[name] = (0, torch.zeros(self.buffer_sz), False) i, buf, filled = self.buffers[name] # Can take tensors or just plain python numbers. if '_histogram' in name: buf[i] = torch.flatten(tensor.detach().cpu()) elif isinstance(tensor, torch.Tensor): buf[i] = tensor.detach().cpu() else: buf[i] = tensor filled = i+1 >= self.buffer_sz or filled self.buffers[name] = ((i+1) % self.buffer_sz, buf, filled) def increment_metric(self, name): if name not in self.counters.keys(): self.counters[name] = 1 else: self.counters[name] += 1 def as_dict(self): result = {} for k, v in self.buffers.items(): i, buf, filled = v if '_histogram' in k: result["loss_" + k] = torch.flatten(buf) if filled: result["loss_" + k] = torch.mean(buf) else: result["loss_" + k] = torch.mean(buf[:i]) for k, v in self.counters.items(): result[k] = v return result # Stores losses in an infinitely-sized list. class InfStorageLossAccumulator: def __init__(self): self.buffers = {} def add_loss(self, name, tensor): if name not in self.buffers.keys(): if "_histogram" in name: tensor = torch.flatten(tensor.detach().cpu()) self.buffers[name] = [] else: self.buffers[name] = [] buf = self.buffers[name] # Can take tensors or just plain python numbers. if '_histogram' in name: buf.append(torch.flatten(tensor.detach().cpu())) elif isinstance(tensor, torch.Tensor): buf.append(tensor.detach().cpu()) else: buf.append(tensor) def increment_metric(self, name): pass def as_dict(self): result = {} for k, buf in self.buffers.items(): if '_histogram' in k: result["loss_" + k] = torch.flatten(buf) else: result["loss_" + k] = torch.mean(torch.stack(buf)) return result