import numpy as np import lmdb import torch import torch.utils.data as data import data.util as util class LQDataset(data.Dataset): '''Read LQ images only in the test phase.''' def __init__(self, opt): super(LQDataset, self).__init__() self.opt = opt self.paths_LQ, self.paths_GT = None, None self.LQ_env = None # environment for lmdb self.paths_LQ, self.sizes_LQ = util.get_image_paths(self.data_type, opt['dataroot_LQ']) assert self.paths_LQ, 'Error: LQ paths are empty.' def _init_lmdb(self): self.LQ_env = lmdb.open(self.opt['dataroot_LQ'], readonly=True, lock=False, readahead=False, meminit=False) def __getitem__(self, index): if self.data_type == 'lmdb' and self.LQ_env is None: self._init_lmdb() LQ_path = None # get LQ image LQ_path = self.LQ_path[index] resolution = [int(s) for s in self.sizes_LQ[index].split('_') ] if self.data_type == 'lmdb' else None img_LQ = util.read_img(self.LQ_env, LQ_path, resolution) H, W, C = img_LQ.shape if self.opt['color']: # change color space if necessary img_LQ = util.channel_convert(C, self.opt['color'], [img_LQ])[0] # BGR to RGB, HWC to CHW, numpy to tensor if img_LQ.shape[2] == 3: img_LQ = img_LQ[:, :, [2, 1, 0]] img_LQ = torch.from_numpy(np.ascontiguousarray(np.transpose(img_LQ, (2, 0, 1)))).float() return {'LQ': img_LQ, 'LQ_path': LQ_path} def __len__(self): return len(self.paths_LQ)