#### general settings name: 002_EDVR_EDVRwoTSAIni_lr4e-4_600k_REDS_LrCAR4S_fixTSA50k_new use_tb_logger: true model: video_base distortion: sr scale: 4 gpu_ids: [0,1,2,3,4,5,6,7] #### datasets datasets: train: name: REDS mode: REDS interval_list: [1] random_reverse: false border_mode: false dataroot_GT: ../datasets/REDS/train_sharp_wval.lmdb dataroot_LQ: ../datasets/REDS/train_sharp_bicubic_wval.lmdb cache_keys: ~ N_frames: 5 use_shuffle: true n_workers: 3 # per GPU batch_size: 32 GT_size: 256 LQ_size: 64 use_flip: true use_rot: true color: RGB val: name: REDS4 mode: video_test dataroot_GT: ../datasets/REDS4/GT dataroot_LQ: ../datasets/REDS4/sharp_bicubic cache_data: True N_frames: 5 padding: new_info #### network structures network_G: which_model_G: EDVR nf: 64 nframes: 5 groups: 8 front_RBs: 5 back_RBs: 10 predeblur: false HR_in: false w_TSA: true #### path path: pretrain_model_G: ../experiments/pretrained_models/EDVR_REDS_SR_M_woTSA.pth strict_load: false resume_state: ~ #### training settings: learning rate scheme, loss train: lr_G: !!float 4e-4 lr_scheme: CosineAnnealingLR_Restart beta1: 0.9 beta2: 0.99 niter: 600000 ft_tsa_only: 50000 warmup_iter: -1 # -1: no warm up T_period: [50000, 100000, 150000, 150000, 150000] restarts: [50000, 150000, 300000, 450000] restart_weights: [1, 1, 1, 1] eta_min: !!float 1e-7 pixel_criterion: cb pixel_weight: 1.0 val_freq: !!float 5e3 manual_seed: 0 #### logger logger: print_freq: 100 save_checkpoint_freq: !!float 5e3