import models.steps.injectors as injectors # Uses a generator to synthesize a sequence of images from [in] and injects the results into a list [out] # All results are checkpointed for memory savings. Recurrent inputs are also detached before being fed back into # the generator. class RecurrentImageGeneratorSequenceInjector(injectors.Injector): def __init__(self, opt, env): super(RecurrentImageGeneratorSequenceInjector, self).__init__(opt, env) def forward(self, state): gen = self.env['generators'][self.opt['generator']] new_state = {} results = [] recurrent_input = torch.zeros_like(state[self.input][0]) for input in state[self.input]: result = checkpoint(gen, input, recurrent_input) results.append(result) recurrent_input = result.detach() new_state = {self.output: results} return new_state class ImageFlowInjector(injectors.Injector): def __init__(self, opt, env): # Requires building this custom cuda kernel. Only require it if explicitly needed. from models.networks.layers.resample2d_package.resample2d import Resample2d super(ImageFlowInjector, self).__init__(opt, env) self.resample = Resample2d() def forward(self, state): return self.resample(state[self.opt['in']], state[self.opt['flow']])