import torch from torch import nn import torch.nn.functional as F from transformers import GPT2Config, GPT2Model from models.arch_util import AttentionBlock from models.audio.music.music_quantizer import MusicQuantizer from models.audio.music.music_quantizer2 import MusicQuantizer2 from trainer.networks import register_model from utils.util import opt_get class ConditioningEncoder(nn.Module): def __init__(self, spec_dim, embedding_dim, attn_blocks=6, num_attn_heads=4): super().__init__() attn = [] self.init = nn.Conv1d(spec_dim, embedding_dim, kernel_size=3, stride=2, padding=1) for a in range(attn_blocks): attn.append(AttentionBlock(embedding_dim, num_attn_heads, do_activation=True)) self.attn = nn.Sequential(*attn) self.dim = embedding_dim def forward(self, x): h = self.init(x) h = self.attn(h) return h.mean(dim=2) class GptMusicLower(nn.Module): def __init__(self, dim, layers, num_target_vectors=512, num_target_groups=2, cv_dim=1024, num_upper_vectors=64, num_upper_groups=4): super().__init__() self.num_groups = num_target_groups self.config = GPT2Config(vocab_size=1, n_positions=8192, n_embd=dim, n_layer=layers, n_head=dim//64, n_inner=dim*2) self.target_quantizer = MusicQuantizer(inp_channels=256, inner_dim=[1024,1024,512], codevector_dim=cv_dim, codebook_size=num_target_vectors, codebook_groups=num_target_groups) self.upper_quantizer = MusicQuantizer2(inp_channels=256, inner_dim=[1024,896,768,640,512,384], codevector_dim=cv_dim, codebook_size=num_upper_vectors, codebook_groups=num_upper_groups) # Following are unused quantizer constructs we delete to avoid DDP errors (and to be efficient.. of course..) del self.target_quantizer.decoder del self.target_quantizer.up del self.upper_quantizer.up self.conditioning_encoder = ConditioningEncoder(256, dim, attn_blocks=4, num_attn_heads=dim//64) self.gpt = GPT2Model(self.config) del self.gpt.wte # Unused, we'll do our own embeddings. self.embeddings = nn.ModuleList([nn.Embedding(num_target_vectors, dim // num_target_groups) for _ in range(num_target_groups)]) self.upper_proj = nn.Conv1d(cv_dim, dim, kernel_size=1) self.heads = nn.ModuleList([nn.Linear(dim, num_target_vectors) for _ in range(num_target_groups)]) def forward(self, mel, conditioning): with torch.no_grad(): self.target_quantizer.eval() codes = self.target_quantizer.get_codes(mel) upper_vector, upper_diversity = self.upper_quantizer(mel, return_decoder_latent=True) upper_vector = self.upper_proj(upper_vector) upper_vector = F.interpolate(upper_vector, size=codes.shape[1], mode='linear') upper_vector = upper_vector.permute(0,2,1) inputs = codes[:, :-1] targets = codes upper_vector = upper_vector[:, :-1] h = [embedding(inputs[:, :, i]) for i, embedding in enumerate(self.embeddings)] h = torch.cat(h, dim=-1) + upper_vector # Stick the conditioning embedding on the front of the input sequence. # The transformer will learn how to integrate it. # This statement also serves to pre-pad the inputs by one token, which is the basis of the next-token-prediction task. IOW: this is the "START" token. cond_emb = self.conditioning_encoder(conditioning).unsqueeze(1) h = torch.cat([cond_emb, h], dim=1) h = self.gpt(inputs_embeds=h, return_dict=True).last_hidden_state losses = 0 for i, head in enumerate(self.heads): logits = head(h).permute(0,2,1) loss = F.cross_entropy(logits, targets[:,:,i]) losses = losses + loss return losses / self.num_groups @register_model def register_music_gpt_lower(opt_net, opt): return GptMusicLower(**opt_get(opt_net, ['kwargs'], {})) if __name__ == '__main__': model = GptMusicLower(512, 12) mel = torch.randn(2,256,400) model(mel, mel)