import copy import os import random from functools import wraps import kornia.augmentation as augs import torch import torch.nn.functional as F import torchvision from PIL import Image from kornia import filters, apply_hflip from torch import nn from torchvision.transforms import ToTensor from data.byol_attachment import RandomApply from trainer.networks import register_model, create_model from utils.util import checkpoint, opt_get def default(val, def_val): return def_val if val is None else val def flatten(t): return t.reshape(t.shape[0], -1) def singleton(cache_key): def inner_fn(fn): @wraps(fn) def wrapper(self, *args, **kwargs): instance = getattr(self, cache_key) if instance is not None: return instance instance = fn(self, *args, **kwargs) setattr(self, cache_key, instance) return instance return wrapper return inner_fn def get_module_device(module): return next(module.parameters()).device def set_requires_grad(model, val): for p in model.parameters(): p.requires_grad = val # Specialized augmentor class that applies a set of image transformations on points as well, allowing one to track # where a point in the src image is located in the dest image. Restricts transformation such that this is possible. class PointwiseAugmentor(nn.Module): def __init__(self, img_size=224): super().__init__() self.jitter = RandomApply(augs.ColorJitter(0.8, 0.8, 0.8, 0.2), p=0.8) self.gray = augs.RandomGrayscale(p=0.2) self.blur = RandomApply(filters.GaussianBlur2d((3, 3), (1.5, 1.5)), p=0.1) self.rrc = augs.RandomResizedCrop((img_size, img_size), same_on_batch=True) # Given a point in the source image, returns the same point in the source image, given the kornia RRC params. def rrc_on_point(self, src_point, params): dh, dw = params['dst'][:,2,1]-params['dst'][:,0,1], params['dst'][:,2,0] - params['dst'][:,0,0] sh, sw = params['src'][:,2,1]-params['src'][:,0,1], params['src'][:,2,0] - params['src'][:,0,0] scale_h, scale_w = sh.float() / dh.float(), sw.float() / dw.float() t, l = src_point[0] - params['src'][0,0,1], src_point[1] - params['src'][0,0,0] t = (t.float() / scale_h[0]).long() l = (l.float() / scale_w[0]).long() return torch.stack([t,l]) def flip_on_point(self, pt, input): t, l = pt[0], pt[1] center = input.shape[-1] // 2 return t, 2 * center - l def forward(self, x, point): d = self.jitter(x) d = self.gray(d) will_flip = random.random() > .5 if will_flip: d = apply_hflip(d) point = self.flip_on_point(point, x) d = self.blur(d) invalid = True while invalid: params = self.rrc.generate_parameters(d.shape) potential = self.rrc_on_point(point, params) # '10' is an arbitrary number: we want to provide some margin. Making predictions at the very edge of an image is not very useful. if potential[0] <= 10 or potential[1] <= 10 or potential[0] > x.shape[-2]-10 or potential[1] > x.shape[-1]-10: continue d = self.rrc(d, params=params) point = potential invalid = False return d, point # loss fn def loss_fn(x, y): x = F.normalize(x, dim=-1, p=2) y = F.normalize(y, dim=-1, p=2) return 2 - 2 * (x * y).sum(dim=-1) # exponential moving average class EMA(): def __init__(self, beta): super().__init__() self.beta = beta def update_average(self, old, new): if old is None: return new return old * self.beta + (1 - self.beta) * new def update_moving_average(ema_updater, ma_model, current_model): for current_params, ma_params in zip(current_model.parameters(), ma_model.parameters()): old_weight, up_weight = ma_params.data, current_params.data ma_params.data = ema_updater.update_average(old_weight, up_weight) # MLP class for projector and predictor class MLP(nn.Module): def __init__(self, dim, projection_size, hidden_size=4096): super().__init__() self.net = nn.Sequential( nn.Linear(dim, hidden_size), nn.BatchNorm1d(hidden_size), nn.ReLU(inplace=True), nn.Linear(hidden_size, projection_size) ) def forward(self, x): x = flatten(x) return self.net(x) # A wrapper class for training against networks that do not collapse into a small-dimensioned latent. class StructuralMLP(nn.Module): def __init__(self, dim, projection_size, hidden_size=4096): super().__init__() b, c, h, w = dim flattened_dim = c * h // 4 * w // 4 self.net = nn.Sequential( nn.Conv2d(c, c, kernel_size=3, padding=1, stride=2), nn.BatchNorm2d(c), nn.ReLU(inplace=True), nn.Conv2d(c, c, kernel_size=3, padding=1, stride=2), nn.BatchNorm2d(c), nn.ReLU(inplace=True), nn.Flatten(), nn.Linear(flattened_dim, hidden_size), nn.BatchNorm1d(hidden_size), nn.ReLU(inplace=True), nn.Linear(hidden_size, projection_size) ) def forward(self, x): return self.net(x) # a wrapper class for the base neural network # will manage the interception of the hidden layer output # and pipe it into the projecter and predictor nets class NetWrapper(nn.Module): def __init__(self, net, projection_size, projection_hidden_size, layer=-2, use_structural_mlp=False): super().__init__() self.net = net self.layer = layer self.projector = None self.projection_size = projection_size self.projection_hidden_size = projection_hidden_size self.structural_mlp = use_structural_mlp self.hidden = None self.hook_registered = False def _find_layer(self): if type(self.layer) == str: modules = dict([*self.net.named_modules()]) return modules.get(self.layer, None) elif type(self.layer) == int: children = [*self.net.children()] return children[self.layer] return None def _hook(self, _, __, output): self.hidden = output def _register_hook(self): layer = self._find_layer() assert layer is not None, f'hidden layer ({self.layer}) not found' handle = layer.register_forward_hook(self._hook) self.hook_registered = True @singleton('projector') def _get_projector(self, hidden): if self.structural_mlp: projector = StructuralMLP(hidden.shape, self.projection_size, self.projection_hidden_size) else: _, dim = hidden.flatten(1,-1).shape projector = MLP(dim, self.projection_size, self.projection_hidden_size) return projector.to(hidden) def get_representation(self, **kwargs): if self.layer == -1: return self.net(**kwargs) if not self.hook_registered: self._register_hook() unused = self.net(**kwargs) hidden = self.hidden self.hidden = None assert hidden is not None, f'hidden layer {self.layer} never emitted an output' return hidden def forward(self, **kwargs): representation = self.get_representation(**kwargs) projector = self._get_projector(representation) projection = checkpoint(projector, representation) return projection class BYOL(nn.Module): def __init__( self, net, image_size, hidden_layer=-2, projection_size=256, projection_hidden_size=4096, moving_average_decay=0.99, use_momentum=True, structural_mlp=False, contrastive=False, ): super().__init__() self.online_encoder = NetWrapper(net, projection_size, projection_hidden_size, layer=hidden_layer, use_structural_mlp=structural_mlp) self.aug = PointwiseAugmentor(image_size) self.use_momentum = use_momentum self.contrastive = contrastive self.target_encoder = None self.target_ema_updater = EMA(moving_average_decay) self.online_predictor = MLP(projection_size, projection_size, projection_hidden_size) # get device of network and make wrapper same device device = get_module_device(net) self.to(device) # send a mock image tensor to instantiate singleton parameters self.forward(torch.randn(2, 3, image_size, image_size, device=device)) @singleton('target_encoder') def _get_target_encoder(self): target_encoder = copy.deepcopy(self.online_encoder) set_requires_grad(target_encoder, False) for p in target_encoder.parameters(): p.DO_NOT_TRAIN = True return target_encoder def reset_moving_average(self): del self.target_encoder self.target_encoder = None def update_for_step(self, step, __): assert self.use_momentum, 'you do not need to update the moving average, since you have turned off momentum for the target encoder' assert self.target_encoder is not None, 'target encoder has not been created yet' update_moving_average(self.target_ema_updater, self.target_encoder, self.online_encoder) def get_debug_values(self, step, __): # In the BYOL paper, this is made to increase over time. Not yet implemented, but still logging the value. dbg = {'target_ema_beta': self.target_ema_updater.beta} if self.contrastive and hasattr(self, 'logs_closs'): dbg['contrastive_distance'] = self.logs_closs dbg['byol_distance'] = self.logs_loss return dbg def visual_dbg(self, step, path): torchvision.utils.save_image(self.im1.cpu().float(), os.path.join(path, "%i_image1.png" % (step,))) torchvision.utils.save_image(self.im2.cpu().float(), os.path.join(path, "%i_image2.png" % (step,))) def get_predictions_and_projections(self, image): _, _, h, w = image.shape point = torch.randint(h//8, 7*h//8, (2,)).long().to(image.device) image_one, pt_one = self.aug(image, point) image_two, pt_two = self.aug(image, point) # Keep copies on hand for visual_dbg. self.im1 = image_one.detach().clone() self.im1[:,:,pt_one[0]-3:pt_one[0]+3,pt_one[1]-3:pt_one[1]+3] = 1 self.im2 = image_two.detach().clone() self.im2[:,:,pt_two[0]-3:pt_two[0]+3,pt_two[1]-3:pt_two[1]+3] = 1 online_proj_one = self.online_encoder(img=image_one, pos=pt_one) online_proj_two = self.online_encoder(img=image_two, pos=pt_two) online_pred_one = self.online_predictor(online_proj_one) online_pred_two = self.online_predictor(online_proj_two) with torch.no_grad(): target_encoder = self._get_target_encoder() if self.use_momentum else self.online_encoder target_proj_one = target_encoder(img=image_one, pos=pt_one).detach() target_proj_two = target_encoder(img=image_two, pos=pt_two).detach() return online_pred_one, online_pred_two, target_proj_one, target_proj_two def forward_normal(self, image): online_pred_one, online_pred_two, target_proj_one, target_proj_two = self.get_predictions_and_projections(image) loss_one = loss_fn(online_pred_one, target_proj_two.detach()) loss_two = loss_fn(online_pred_two, target_proj_one.detach()) loss = loss_one + loss_two return loss.mean() def forward_contrastive(self, image): online_pred_one_1, online_pred_two_1, target_proj_one_1, target_proj_two_1 = self.get_predictions_and_projections(image) loss_one = loss_fn(online_pred_one_1, target_proj_two_1.detach()) loss_two = loss_fn(online_pred_two_1, target_proj_one_1.detach()) loss = loss_one + loss_two online_pred_one_2, online_pred_two_2, target_proj_one_2, target_proj_two_2 = self.get_predictions_and_projections(image) loss_one = loss_fn(online_pred_one_2, target_proj_two_2.detach()) loss_two = loss_fn(online_pred_two_2, target_proj_one_2.detach()) loss = (loss + loss_one + loss_two).mean() contrastive_loss = torch.cat([loss_fn(online_pred_one_1, target_proj_two_2), loss_fn(online_pred_two_1, target_proj_one_2), loss_fn(online_pred_one_2, target_proj_two_1), loss_fn(online_pred_two_2, target_proj_one_1)], dim=0) k = contrastive_loss.shape[0] // 2 # Take half of the total contrastive loss predictions. contrastive_loss = torch.topk(contrastive_loss, k, dim=0).values.mean() self.logs_loss = loss.detach() self.logs_closs = contrastive_loss.detach() return loss - contrastive_los00s def forward(self, image): if self.contrastive: return self.forward_contrastive(image) else: return self.forward_normal(image) if __name__ == '__main__': pa = PointwiseAugmentor(256) for j in range(100): t = ToTensor()(Image.open('E:\\4k6k\\datasets\\ns_images\\imagesets\\000001_152761.jpg')).unsqueeze(0).repeat(8,1,1,1) p = torch.randint(50,180,(2,)) augmented, dp = pa(t, p) t, p = pa(t, p) t[:,:,p[0]-3:p[0]+3,p[1]-3:p[1]+3] = 0 torchvision.utils.save_image(t, f"{j}_src.png") augmented[:,:,dp[0]-3:dp[0]+3,dp[1]-3:dp[1]+3] = 0 torchvision.utils.save_image(augmented, f"{j}_dst.png") @register_model def register_pixel_local_byol(opt_net, opt): subnet = create_model(opt, opt_net['subnet']) return BYOL(subnet, opt_net['image_size'], opt_net['hidden_layer'], contrastive=opt_net['contrastive'])