from itertools import groupby import torch from transformers import Wav2Vec2CTCTokenizer from models.audio.tts.ctc_code_generator import CtcCodeGenerator def get_ctc_metadata(codes): if isinstance(codes, torch.Tensor): codes = codes.tolist() grouped = groupby(codes) rcodes, repeats, pads = [], [], [0] for val, group in grouped: if val == 0: pads[-1] = len(list( group)) # This is a very important distinction! It means the padding belongs to the character proceeding it. else: rcodes.append(val) repeats.append(len(list(group))) pads.append(0) rcodes = torch.tensor(rcodes) # These clip values are sane maximum values which I did not see in the datasets I have access to. repeats = torch.clip(torch.tensor(repeats), min=1, max=30) pads = torch.clip(torch.tensor(pads[:-1]), max=120) return rcodes, pads, repeats if __name__ == '__main__': model = CtcCodeGenerator(model_dim=512, layers=16, dropout=0).eval().cuda() model.load_state_dict(torch.load('../experiments/train_encoder_build_ctc_alignments_toy/models/76000_generator_ema.pth')) tokenizer = Wav2Vec2CTCTokenizer.from_pretrained('jbetker/tacotron-symbols') text = "and now, what do you want." seq = [0, 0, 0, 38, 51, 51, 41, 11, 11, 51, 51, 0, 0, 0, 0, 52, 0, 60, 0, 0, 0, 0, 0, 0, 6, 11, 11, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 60, 45, 0, 38, 57, 57, 11, 0, 41, 52, 52, 11, 11, 62, 52, 52, 58, 0, 11, 11, 60, 0, 0, 0, 0, 38, 0, 0, 51, 51, 0, 0, 57, 0, 0, 7, 7, 0, 0, 0] codes, pads, repeats = get_ctc_metadata(seq) with torch.no_grad(): codes = codes.cuda().unsqueeze(0) pads = pads.cuda().unsqueeze(0) repeats = repeats.cuda().unsqueeze(0) ppads = pads.clone() prepeats = repeats.clone() mask = torch.zeros_like(pads) conf_str = tokenizer.decode(codes[0].tolist()) for s in range(codes.shape[-1]): logits, confidences = model.inference(codes, pads * mask, repeats * mask) confidences = confidences * mask.logical_not() # prevent prediction of tokens that have already been predicted. i = confidences.argmax(dim=-1) pred = logits[0,i].argmax() pred_pads = pred % model.max_pad pred_repeats = pred // model.max_pad ppads[0,i] = pred_pads prepeats[0,i] = pred_repeats mask[0,i] = 1 conf_str = conf_str[:i] + conf_str[i].upper() + conf_str[i+1:] print(f"conf: {conf_str} pads={pred_pads}:{pads[0,i].item()} repeats={pred_repeats}:{repeats[0,i].item()}")