import torch import torch.nn as nn import torch.nn.functional as F from munch import munchify from models.gpt_voice.lucidrains_gpt import Transformer from models.tacotron2.taco_utils import get_mask_from_lengths from models.tacotron2.text import symbols, sequence_to_text from trainer.networks import register_model from utils.util import opt_get class ResBlock(nn.Module): def __init__(self, chan): super().__init__() self.net = nn.Sequential( nn.Conv1d(chan, chan, kernel_size=5, padding = 2), nn.BatchNorm1d(chan), nn.ReLU(), nn.Conv1d(chan, chan, kernel_size=5, padding = 2), nn.BatchNorm1d(chan) ) def forward(self, x): return F.relu(self.net(x) + x) class MelEncoder(nn.Module): def __init__(self, channels, mel_channels=80): super().__init__() self.channels = channels self.encoder = nn.Sequential(nn.Conv1d(mel_channels, channels//4, kernel_size=7, padding=3), ResBlock(channels//4), ResBlock(channels//4), nn.Conv1d(channels//4, channels//2, kernel_size=5, stride=2, padding=2), nn.BatchNorm1d(channels//2), nn.ReLU(), ResBlock(channels//2), ResBlock(channels//2), ResBlock(channels//2), nn.Conv1d(channels//2, channels, kernel_size=5, stride=2, padding=2), ResBlock(channels), ResBlock(channels), ResBlock(channels) ) def forward(self, x): return self.encoder(x) class GptSegmentor(nn.Module): MAX_MEL_FRAMES = 2000 // 4 def __init__(self, layers=8, model_dim=512, heads=8): super().__init__() self.model_dim = model_dim self.max_mel_frames = self.MAX_MEL_FRAMES self.mel_encoder = MelEncoder(model_dim) self.mel_pos_embedding = nn.Embedding(self.MAX_MEL_FRAMES, model_dim) self.gpt = Transformer(dim=model_dim, depth=layers, seq_len=self.MAX_MEL_FRAMES, heads=heads, attn_dropout=.1, ff_dropout=.1, non_causal_sequence_partition=self.MAX_MEL_FRAMES) self.final_norm = nn.LayerNorm(model_dim) self.stop_head = nn.Linear(model_dim, 1) def forward(self, mel_inputs, termination_points=None): mel_emb = self.mel_encoder(mel_inputs) mel_emb = mel_emb.permute(0,2,1).contiguous() mel_emb = mel_emb + self.mel_pos_embedding(torch.arange(mel_emb.shape[1], device=mel_emb.device)) enc = self.gpt(mel_emb) stop_logits = self.final_norm(enc) stop_logits = self.stop_head(stop_logits) if termination_points is not None: # The MEL gets decimated to 1/4 the size by the encoder, so we need to do the same to the termination points. termination_points = F.interpolate(termination_points.unsqueeze(1), size=mel_emb.shape[1], mode='area').squeeze() termination_points = (termination_points > 0).float() # Compute loss loss = F.binary_cross_entropy_with_logits(stop_logits.squeeze(-1), termination_points) return loss.mean() else: return stop_logits @register_model def register_gpt_segmentor(opt_net, opt): return GptSegmentor(**opt_get(opt_net, ['kwargs'], {})) if __name__ == '__main__': gpt = GptSegmentor() l = gpt(torch.randn(3,80,94), torch.zeros(3,94)) print(l.shape) #o = gpt.infer(torch.randint(high=24, size=(2,60))) #print(o.shape)