import models.archs.SwitchedResidualGenerator_arch as srg import torch import torch.nn as nn from switched_conv_util import save_attention_to_image from switched_conv import compute_attention_specificity from models.archs.arch_util import ConvGnLelu, ExpansionBlock import functools import torch.nn.functional as F # Some notes about this new architecture: # 1) Discriminator is going to need to get update_for_step() called. # 2) Not sure if pixgan part of discriminator is going to work properly, make sure to test at multiple add levels. # 3) Also not sure if growth modules will be properly saved/trained, be sure to test this. # 4) start_step will need to get set properly when constructing these models, even when resuming - OR another method needs to be added to resume properly. class GrowingSRGBase(nn.Module): def __init__(self, progressive_step_schedule, switch_reductions, growth_fade_in_steps, switch_filters, switch_processing_layers, trans_counts, trans_layers, transformation_filters, initial_temp=20, final_temperature_step=50000, upsample_factor=1, add_scalable_noise_to_transforms=False, start_step=0): super(GrowingSRGBase, self).__init__() switches = [] self.initial_conv = ConvGnLelu(3, transformation_filters, norm=False, activation=False, bias=True) self.upconv1 = ConvGnLelu(transformation_filters, transformation_filters, norm=False, bias=True) self.upconv2 = ConvGnLelu(transformation_filters, transformation_filters, norm=False, bias=True) self.hr_conv = ConvGnLelu(transformation_filters, transformation_filters, norm=False, bias=True) self.final_conv = ConvGnLelu(transformation_filters, 3, norm=False, activation=False, bias=True) self.switch_filters = switch_filters self.switch_processing_layers = switch_processing_layers self.trans_layers = trans_layers self.transformation_filters = transformation_filters self.progressive_schedule = progressive_step_schedule self.switch_reductions = switch_reductions # This lists the reductions for all switches (even ones not activated yet). self.growth_fade_in_per_step = 1 / growth_fade_in_steps self.transformation_counts = trans_counts self.init_temperature = initial_temp self.final_temperature_step = final_temperature_step self.attentions = None self.upsample_factor = upsample_factor self.add_noise_to_transform = add_scalable_noise_to_transforms self.start_step = start_step self.latest_step = start_step self.fades = [] self.counter = 0 assert self.upsample_factor == 2 or self.upsample_factor == 4 switches = [] for i, (step, reductions) in enumerate(zip(progressive_step_schedule, switch_reductions)): multiplx_fn = functools.partial(srg.ConvBasisMultiplexer, self.transformation_filters, self.switch_filters, reductions, self.switch_processing_layers, self.transformation_counts) pretransform_fn = functools.partial(ConvGnLelu, self.transformation_filters, self.transformation_filters, norm=False, bias=False, weight_init_factor=.1) transform_fn = functools.partial(srg.MultiConvBlock, self.transformation_filters, int(self.transformation_filters * 1.5), self.transformation_filters, kernel_size=3, depth=self.trans_layers, weight_init_factor=.1) switches.append(srg.ConfigurableSwitchComputer(self.transformation_filters, multiplx_fn, pre_transform_block=pretransform_fn, transform_block=transform_fn, transform_count=self.transformation_counts, init_temp=self.init_temperature, add_scalable_noise_to_transforms=self.add_noise_to_transform, attention_norm=False)) self.progressive_switches = nn.ModuleList(switches) def get_param_groups(self): param_groups = [] base_param_group = [] for k, v in self.named_parameters(): if "progressive_switches" not in k and v.requires_grad: base_param_group.append(v) param_groups.append({'params': base_param_group}) for i, sw in enumerate(self.progressive_switches): sw_param_group = [] for k, v in sw.named_parameters(): if v.requires_grad: sw_param_group.append(v) param_groups.append({'params': sw_param_group}) return param_groups # This is a hacky way of modifying the underlying model while training. Since changing the model means changing # the optimizer and the scheduler, these things are fed in. For ProgressiveSrg, this function adds an additional # switch to the end of the chain with depth=3 and an online time set at the end fo the function. def update_model(self, opt, sched): multiplx_fn = functools.partial(srg.ConvBasisMultiplexer, self.transformation_filters, self.switch_filters, 3, self.switch_processing_layers, self.transformation_counts) pretransform_fn = functools.partial(ConvGnLelu, self.transformation_filters, self.transformation_filters, norm=False, bias=False, weight_init_factor=.1) transform_fn = functools.partial(srg.MultiConvBlock, self.transformation_filters, int(self.transformation_filters * 1.5), self.transformation_filters, kernel_size=3, depth=self.trans_layers, weight_init_factor=.1) new_sw = srg.ConfigurableSwitchComputer(self.transformation_filters, multiplx_fn, pre_transform_block=pretransform_fn, transform_block=transform_fn, transform_count=self.transformation_counts, init_temp=self.init_temperature, add_scalable_noise_to_transforms=self.add_noise_to_transform, attention_norm=False).to('cuda') self.progressive_switches.append(new_sw) new_sw_param_group = [] for k, v in new_sw.named_parameters(): if v.requires_grad: new_sw_param_group.append(v) opt.add_param_group({'params': new_sw_param_group}) self.progressive_schedule.append(150000) sched.group_starts.append(150000) def get_progressive_starts(self): # The base param group starts at step 0, the rest are defined via progressive_switches. return [0] + self.progressive_schedule # This method turns requires_grad on and off for different switches, allowing very large models to be trained while # using less memory. When used in conjunction with gradient accumulation, it becomes a form of model parallelism. # controls the proportion of switches that are enabled. 1/groups will be enabled. # Switches that are younger than 40000 steps are not eligible to be turned off. def do_switched_grad(self, groups=1): # If requires_grad is already disabled, don't bother. if not self.initial_conv.conv.weight.requires_grad or groups == 1: return self.counter = (self.counter + 1) % groups enabled = [] for i, sw in enumerate(self.progressive_switches): if self.latest_step - self.progressive_schedule[i] > 40000 and i % groups != self.counter: for p in sw.parameters(): p.requires_grad = False else: enabled.append(i) for p in sw.parameters(): p.requires_grad = True def forward(self, x): self.do_switched_grad(2) x = self.initial_conv(x) self.attentions = [] self.fades = [] self.enabled_switches = 0 for i, sw in enumerate(self.progressive_switches): fade_in = 1 if self.progressive_schedule[i] == 0 else 0 if self.latest_step > 0 and self.progressive_schedule[i] != 0: switch_age = self.latest_step - self.progressive_schedule[i] fade_in = min(1, switch_age * self.growth_fade_in_per_step) if fade_in > 0: self.enabled_switches += 1 x, att = sw.forward(x, True, fixed_scale=fade_in) self.attentions.append(att) self.fades.append(fade_in) x = self.upconv1(F.interpolate(x, scale_factor=2, mode="nearest")) if self.upsample_factor > 2: x = F.interpolate(x, scale_factor=2, mode="nearest") x = self.upconv2(x) x = self.final_conv(self.hr_conv(x)) return x, x def update_for_step(self, step, experiments_path='.'): self.latest_step = step + self.start_step # Set the temperature of the switches, per-layer. for i, (first_step, sw) in enumerate(zip(self.progressive_schedule, self.progressive_switches)): temp_loss_per_step = (self.init_temperature - 1) / self.final_temperature_step sw.set_temperature(min(self.init_temperature, max(self.init_temperature - temp_loss_per_step * (step - first_step), 1))) # Save attention images. if self.attentions is not None and step % 50 == 0: [save_attention_to_image(experiments_path, self.attentions[i], self.transformation_counts, step, "a%i" % (i+1,), l_mult=10) for i in range(len(self.attentions))] def get_debug_values(self, step): mean_hists = [compute_attention_specificity(att, 2) for att in self.attentions] means = [i[0] for i in mean_hists] hists = [i[1].clone().detach().cpu().flatten() for i in mean_hists] val = {} for i in range(len(means)): val["switch_%i_specificity" % (i,)] = means[i] val["switch_%i_histogram" % (i,)] = hists[i] val["switch_%i_temperature" % (i,)] = self.progressive_switches[i].switch.temperature for i, f in enumerate(self.fades): val["switch_%i_fade" % (i,)] = f val["enabled_switches"] = self.enabled_switches return val class DiscriminatorDownsample(nn.Module): def __init__(self, base_filters, end_filters): self.conv0 = ConvGnLelu(base_filters, end_filters, kernel_size=3, bias=False) self.conv1 = ConvGnLelu(end_filters, end_filters, kernel_size=3, stride=2, bias=False) def forward(self, x): return self.conv1(self.conv0(x)) class DiscriminatorUpsample(nn.Module): def __init__(self, base_filters, end_filters): self.up = ExpansionBlock(base_filters, end_filters, block=ConvGnLelu) self.proc = ConvGnLelu(end_filters, end_filters, bias=False) self.collapse = ConvGnLelu(end_filters, 1, bias=True, norm=False, activation=False) def forward(self, x, ff): x = self.up1(x, ff) return x, self.collapse1(self.proc1(x)) class GrowingUnetDiscBase(nn.Module): def __init__(self, nf, growing_schedule, growth_fade_in_steps, start_step=0): super(GrowingUnetDiscBase, self).__init__() # [64, 128, 128] self.conv0_0 = ConvGnLelu(3, nf, kernel_size=3, bias=True, activation=False) self.conv0_1 = ConvGnLelu(nf, nf, kernel_size=3, stride=2, bias=False) # [64, 64, 64] self.conv1_0 = ConvGnLelu(nf, nf * 2, kernel_size=3, bias=False) self.conv1_1 = ConvGnLelu(nf * 2, nf * 2, kernel_size=3, stride=2, bias=False) self.down_base = DiscriminatorDownsample(nf * 2, nf * 4) self.up_base = DiscriminatorUpsample(nf * 4, nf * 2) self.progressive_schedule = growing_schedule self.growth_fade_in_per_step = 1 / growth_fade_in_steps self.pnf = nf * 4 self.downsamples = nn.ModuleList([]) self.upsamples = nn.ModuleList([]) for i, step in enumerate(growing_schedule): if step >= start_step: self.add_layer(i + 1) def add_layer(self): self.downsamples.append(DiscriminatorDownsample(self.pnf, self.pnf)) self.upsamples.append(DiscriminatorUpsample(self.pnf, self.pnf)) def update_for_step(self, step): self.latest_step = step # Add any new layers as spelled out by the schedule. if step != 0: for i, s in enumerate(self.progressive_schedule): if s == step: self.add_layer(i + 1) def forward(self, x, output_feature_vector=False): x = self.conv0_0(x) x = self.conv0_1(x) x = self.conv1_0(x) x = self.conv1_1(x) base_fea = self.down_base(x) x = base_fea skips = [] for down in self.downsamples: x = down(x) skips.append(x) losses = [] for i, up in enumerate(self.upsamples): j = i + 1 x, loss = up(x, skips[-j]) losses.append(loss) # This variant averages the outputs of the U-net across the upsamples, weighting the contribution # to the average less for newly growing levels. _, base_loss = self.up_base(x, base_fea) res = base_loss.shape[2:] mean_weight = 1 for i, l in enumerate(losses): fade_in = 1 if self.latest_step > 0 and self.progressive_schedule[i] != 0: disc_age = self.latest_step - self.progressive_schedule[i] fade_in = min(1, disc_age * self.growth_fade_in_per_step) mean_weight += fade_in base_loss += F.interpolate(l, size=res, mode="bilinear", align_corners=False) * fade_in base_loss /= mean_weight return base_loss.view(-1, 1) def pixgan_parameters(self): return 1, 4