import torch from models.diffusion.gaussian_diffusion import GaussianDiffusion, get_named_beta_schedule from models.diffusion.resample import create_named_schedule_sampler, LossAwareSampler from models.diffusion.respace import space_timesteps, SpacedDiffusion from trainer.inject import Injector from utils.util import opt_get # Injects a gaussian diffusion loss as described by OpenAIs "Improved Denoising Diffusion Probabilistic Models" paper. # Largely uses OpenAI's own code to do so (all code from models.diffusion.*) class GaussianDiffusionInjector(Injector): def __init__(self, opt, env): super().__init__(opt, env) self.generator = opt['generator'] self.output_variational_bounds_key = opt['out_key_vb_loss'] self.output_x_start_key = opt['out_key_x_start'] opt['diffusion_args']['betas'] = get_named_beta_schedule(**opt['beta_schedule']) opt['diffusion_args']['use_timesteps'] = space_timesteps(opt['beta_schedule']['num_diffusion_timesteps'], [opt['beta_schedule']['num_diffusion_timesteps']]) self.diffusion = SpacedDiffusion(**opt['diffusion_args']) self.schedule_sampler = create_named_schedule_sampler(opt['sampler_type'], self.diffusion) self.model_input_keys = opt_get(opt, ['model_input_keys'], []) def forward(self, state): gen = self.env['generators'][self.opt['generator']] hq = state[self.input] model_inputs = {k: state[v] for k, v in self.model_input_keys.items()} t, weights = self.schedule_sampler.sample(hq.shape[0], hq.device) diffusion_outputs = self.diffusion.training_losses(gen, hq, t, model_kwargs=model_inputs) if isinstance(self.schedule_sampler, LossAwareSampler): self.schedule_sampler.update_with_local_losses(t, diffusion_outputs['losses']) return {self.output: diffusion_outputs['mse'], self.output_variational_bounds_key: diffusion_outputs['vb'], self.output_x_start_key: diffusion_outputs['x_start_predicted']} # Performs inference using a network trained to predict a reverse diffusion process, which nets a image. class GaussianDiffusionInferenceInjector(Injector): def __init__(self, opt, env): super().__init__(opt, env) self.generator = opt['generator'] self.output_shape = opt['output_shape'] opt['diffusion_args']['betas'] = get_named_beta_schedule(**opt['beta_schedule']) opt['diffusion_args']['use_timesteps'] = space_timesteps(opt['beta_schedule']['num_diffusion_timesteps'], [opt_get(opt, ['respaced_timestep_spacing'], opt['beta_schedule']['num_diffusion_timesteps'])]) self.diffusion = SpacedDiffusion(**opt['diffusion_args']) self.model_input_keys = opt_get(opt, ['model_input_keys'], []) def forward(self, state): gen = self.env['generators'][self.opt['generator']] batch_size = self.output_shape[0] model_inputs = {k: state[v][:batch_size] for k, v in self.model_input_keys.items()} gen.eval() with torch.no_grad(): gen = self.diffusion.p_sample_loop(gen, self.output_shape, model_kwargs=model_inputs) return {self.output: gen}