import os.path as osp import logging import shutil import time import argparse from collections import OrderedDict import os import torchvision import utils import utils.options as option import utils.util as util from data.util import bgr2ycbcr import models.archs.SwitchedResidualGenerator_arch as srg from models.ExtensibleTrainer import ExtensibleTrainer from switched_conv.switched_conv_util import save_attention_to_image, save_attention_to_image_rgb from switched_conv.switched_conv import compute_attention_specificity from data import create_dataset, create_dataloader from tqdm import tqdm import torch import models.networks as networks if __name__ == "__main__": #### options torch.backends.cudnn.benchmark = True srg_analyze = False parser = argparse.ArgumentParser() parser.add_argument('-opt', type=str, help='Path to options YAML file.', default='../../options/train_psnr_approximator.yml') opt = option.parse(parser.parse_args().opt, is_train=False) opt = option.dict_to_nonedict(opt) utils.util.loaded_options = opt util.mkdirs( (path for key, path in opt['path'].items() if not key == 'experiments_root' and 'pretrain_model' not in key and 'resume' not in key)) util.setup_logger('base', opt['path']['log'], 'test_' + opt['name'], level=logging.INFO, screen=True, tofile=True) logger = logging.getLogger('base') logger.info(option.dict2str(opt)) #### Create test dataset and dataloader test_loaders = [] for phase, dataset_opt in sorted(opt['datasets'].items()): dataset_opt['n_workers'] = 0 test_set = create_dataset(dataset_opt) test_loader = create_dataloader(test_set, dataset_opt, opt) logger.info('Number of test images in [{:s}]: {:d}'.format(dataset_opt['name'], len(test_set))) test_loaders.append(test_loader) model = ExtensibleTrainer(opt) for test_loader in test_loaders: test_set_name = test_loader.dataset.opt['name'] logger.info('\nTesting [{:s}]...'.format(test_set_name)) test_start_time = time.time() dataset_dir = osp.join(opt['path']['results_root'], test_set_name) util.mkdir(dataset_dir) dst_path = "F:\\playground" [os.makedirs(osp.join(dst_path, str(i)), exist_ok=True) for i in range(10)] corruptions = ['none', 'color_quantization', 'gaussian_blur', 'motion_blur', 'smooth_blur', 'noise', 'jpeg-medium', 'jpeg-broad', 'jpeg-normal', 'saturation', 'lq_resampling', 'lq_resampling4x'] c_counter = 0 test_set.corruptor.num_corrupts = 0 test_set.corruptor.random_corruptions = [] test_set.corruptor.fixed_corruptions = [corruptions[0]] corruption_mse = [(0,0) for _ in corruptions] tq = tqdm(test_loader) batch_size = opt['datasets']['train']['batch_size'] for data in tq: need_GT = False if test_loader.dataset.opt['dataroot_GT'] is None else True model.feed_data(data, need_GT=need_GT) model.test() est_psnr = torch.mean(model.eval_state['psnr_approximate'][0], dim=[1,2,3]) for i in range(est_psnr.shape[0]): im_path = data['GT_path'][i] torchvision.utils.save_image(model.eval_state['lq'][0][i], osp.join(dst_path, str(int(est_psnr[i]*10)), osp.basename(im_path))) #shutil.copy(im_path, osp.join(dst_path, str(int(est_psnr[i]*10)))) last_mse, last_ctr = corruption_mse[c_counter % len(corruptions)] corruption_mse[c_counter % len(corruptions)] = (last_mse + torch.sum(est_psnr).item(), last_ctr + 1) c_counter += 1 test_set.corruptor.fixed_corruptions = [corruptions[c_counter % len(corruptions)]] if c_counter % 100 == 0: for i, (mse, ctr) in enumerate(corruption_mse): print("%s: %f" % (corruptions[i], mse / (ctr * batch_size)))