import argparse import torch import torchaudio from data.audio.unsupervised_audio_dataset import load_audio from scripts.audio.gen.speech_synthesis_utils import do_spectrogram_diffusion, \ load_discrete_vocoder_diffuser, wav_to_mel, convert_mel_to_codes from utils.audio import plot_spectrogram from utils.util import load_model_from_config def roundtrip_vocoding(dvae, vocoder, diffuser, clip, cond=None, plot_spec=False): clip = clip.unsqueeze(0) if cond is None: cond = clip else: cond = cond.unsqueeze(0) mel = wav_to_mel(clip) if plot_spec: plot_spectrogram(mel[0].cpu()) codes = convert_mel_to_codes(dvae, mel) return if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument('-opt', type=str, help='Path to options YAML file used to train the diffusion model', default='X:\\dlas\\experiments\\train_diffusion_vocoder_with_cond_new_dvae.yml') parser.add_argument('-diffusion_model_name', type=str, help='Name of the diffusion model in opt.', default='generator') parser.add_argument('-diffusion_model_path', type=str, help='Name of the diffusion model in opt.', default='X:\\dlas\\experiments\\train_diffusion_vocoder_with_cond_new_dvae_full\\models\\6100_generator_ema.pth') parser.add_argument('-dvae_model_name', type=str, help='Name of the DVAE model in opt.', default='dvae') parser.add_argument('-input_file', type=str, help='Path to the input torch save file.', default='speech_forward_mels.pth') parser.add_argument('-cond', type=str, help='Path to the conditioning input audio file.', default='Z:\\clips\\books1\\3042_18_Holden__000000000\\00037.wav') args = parser.parse_args() print("Loading DVAE..") dvae = load_model_from_config(args.opt, args.dvae_model_name) print("Loading Diffusion Model..") diffusion = load_model_from_config(args.opt, args.diffusion_model_name, also_load_savepoint=False, load_path=args.diffusion_model_path) print("Loading data..") cond = load_audio(args.cond, 22050) if cond.shape[-1] > 44100+10000: cond = cond[:,10000:54100] cond = cond.unsqueeze(0).cuda() diffuser = load_discrete_vocoder_diffuser(desired_diffusion_steps=20) inp = torch.load(args.input_file) codes = inp print("Performing inference..") for i, cb in enumerate(codes): roundtripped = do_spectrogram_diffusion(diffusion, dvae, diffuser, cb.unsqueeze(0).cuda(), cond, spectrogram_compression_factor=128, plt_spec=False) torchaudio.save(f'vocoded_output_sp_{i}.wav', roundtripped.squeeze(0).cpu(), 11025)