import os import torch from data.util import find_files_of_type, is_audio_file from trainer.injectors.audio_injectors import MelSpectrogramInjector from utils.util import load_audio if __name__ == '__main__': path = 'C:\\Users\\jbetk\\Documents\\tmp\\some_audio' inj = MelSpectrogramInjector({'in': 'wav', 'out': 'mel', 'mel_fmax': 12000, 'sampling_rate': 22050, 'n_mel_channels': 100 },{}) audio = find_files_of_type('img', path, qualifier=is_audio_file)[0] for clip in audio: if not clip.endswith('.wav'): continue wav = load_audio(clip, 24000) mel = inj({'wav': wav.unsqueeze(0)})['mel'] torch.save(mel, clip.replace('.wav', '.mel'))