from math import ceil import numpy as np from spleeter.audio.adapter import AudioAdapter from torch.utils.data import Dataset from data.util import find_audio_files class SpleeterDataset(Dataset): def __init__(self, src_dir, batch_sz, max_duration, sample_rate=22050, partition=None, partition_size=None, resume=None): self.batch_sz = batch_sz self.max_duration = max_duration self.files = find_audio_files(src_dir, include_nonwav=True) self.sample_rate = sample_rate # Partition files if needed. if partition_size is not None: psz = int(partition_size) prt = int(partition) self.files = self.files[prt * psz:(prt + 1) * psz] # Find the resume point and carry on from there. if resume is not None: for i, f in enumerate(self.files): if resume in f: break assert i < len(self.files) self.files = self.files[i:] self.loader = AudioAdapter.default() def __len__(self): return ceil(len(self.files) / self.batch_sz) def __getitem__(self, item): item = item * self.batch_sz wavs = None files = [] ends = [] for k in range(self.batch_sz): ind = k+item if ind >= len(self.files): break #try: wav, sr = self.loader.load(self.files[ind], sample_rate=self.sample_rate) assert sr == 22050 # Get rid of all channels except one. if wav.shape[1] > 1: wav = wav[:, 0] if wavs is None: wavs = wav else: wavs = np.concatenate([wavs, wav]) ends.append(wavs.shape[0]) files.append(self.files[ind]) #except: # print(f'Error loading {self.files[ind]}') return { 'audio': wavs, 'files': files, 'ends': ends }