import os.path as osp import logging import time import argparse import os import torchvision import utils import utils.options as option import utils.util as util from trainer.ExtensibleTrainer import ExtensibleTrainer from data import create_dataset, create_dataloader from tqdm import tqdm import torch if __name__ == "__main__": #### options torch.backends.cudnn.benchmark = True srg_analyze = False parser = argparse.ArgumentParser() parser.add_argument('-opt', type=str, help='Path to options YAML file.', default='../../options/train_psnr_approximator.yml') opt = option.parse(parser.parse_args().opt, is_train=False) opt = option.dict_to_nonedict(opt) utils.util.loaded_options = opt util.mkdirs( (path for key, path in opt['path'].items() if not key == 'experiments_root' and 'pretrain_model' not in key and 'resume' not in key)) util.setup_logger('base', opt['path']['log'], 'test_' + opt['name'], level=logging.INFO, screen=True, tofile=True) logger = logging.getLogger('base') logger.info(option.dict2str(opt)) #### Create test dataset and dataloader test_loaders = [] for phase, dataset_opt in sorted(opt['datasets'].items()): dataset_opt['n_workers'] = 0 test_set = create_dataset(dataset_opt) test_loader = create_dataloader(test_set, dataset_opt, opt) logger.info('Number of test images in [{:s}]: {:d}'.format(dataset_opt['name'], len(test_set))) test_loaders.append(test_loader) model = ExtensibleTrainer(opt) for test_loader in test_loaders: test_set_name = test_loader.dataset.opt['name'] logger.info('\nTesting [{:s}]...'.format(test_set_name)) test_start_time = time.time() dataset_dir = osp.join(opt['path']['results_root'], test_set_name) util.mkdir(dataset_dir) dst_path = "F:\\playground" [os.makedirs(osp.join(dst_path, str(i)), exist_ok=True) for i in range(10)] corruptions = ['none', 'color_quantization', 'gaussian_blur', 'motion_blur', 'smooth_blur', 'noise', 'jpeg-medium', 'jpeg-broad', 'jpeg-normal', 'saturation', 'lq_resampling', 'lq_resampling4x'] c_counter = 0 test_set.corruptor.num_corrupts = 0 test_set.corruptor.random_corruptions = [] test_set.corruptor.fixed_corruptions = [corruptions[0]] corruption_mse = [(0,0) for _ in corruptions] tq = tqdm(test_loader) batch_size = opt['datasets']['train']['batch_size'] for data in tq: need_GT = False if test_loader.dataset.opt['dataroot_GT'] is None else True model.feed_data(data, need_GT=need_GT) model.test() est_psnr = torch.mean(model.eval_state['psnr_approximate'][0], dim=[1,2,3]) for i in range(est_psnr.shape[0]): im_path = data['GT_path'][i] torchvision.utils.save_image(model.eval_state['lq'][0][i], osp.join(dst_path, str(int(est_psnr[i]*10)), osp.basename(im_path))) #shutil.copy(im_path, osp.join(dst_path, str(int(est_psnr[i]*10)))) last_mse, last_ctr = corruption_mse[c_counter % len(corruptions)] corruption_mse[c_counter % len(corruptions)] = (last_mse + torch.sum(est_psnr).item(), last_ctr + 1) c_counter += 1 test_set.corruptor.fixed_corruptions = [corruptions[c_counter % len(corruptions)]] if c_counter % 100 == 0: for i, (mse, ctr) in enumerate(corruption_mse): print("%s: %f" % (corruptions[i], mse / (ctr * batch_size)))