from copy import deepcopy from datasets import load_metric import torch from tqdm import tqdm from transformers import Wav2Vec2Processor, Wav2Vec2ForCTC import trainer.eval.evaluator as evaluator from data import create_dataset, create_dataloader from models.asr.w2v_wrapper import only_letters, Wav2VecWrapper from models.tacotron2.text import sequence_to_text # Librispeech: # baseline: .045% WER. # fine-tuned new head (0): .054% WER # # baseline: .328 # 0: .342 # 24000: .346 def tacotron_detokenize(seq): return only_letters(sequence_to_text(seq)) fb_processor = None def fb_detokenize(seq): global fb_processor if fb_processor is None: fb_processor = Wav2Vec2Processor.from_pretrained(f"facebook/wav2vec2-large-960h") return fb_processor.decode(seq) class WerEvaluator(evaluator.Evaluator): """ Evaluator that produces the WER for a speech recognition model on a test set. """ def __init__(self, model, opt_eval, env, detokenizer_fn=tacotron_detokenize): super().__init__(model, opt_eval, env, uses_all_ddp=False) self.clip_key = opt_eval['clip_key'] self.clip_lengths_key = opt_eval['clip_lengths_key'] self.text_seq_key = opt_eval['text_seq_key'] self.text_seq_lengths_key = opt_eval['text_seq_lengths_key'] self.wer_metric = load_metric('wer') self.detokenizer_fn = detokenizer_fn def perform_eval(self): val_opt = deepcopy(self.env['opt']['datasets']['val']) val_opt['batch_size'] = 1 # This is important to ensure no padding. val_dataset, collate_fn = create_dataset(val_opt, return_collate=True) val_loader = create_dataloader(val_dataset, val_opt, self.env['opt'], None, collate_fn=collate_fn) model = self.model.module if hasattr(self.model, 'module') else self.model # Unwrap DDP models model.eval() with torch.no_grad(): preds = [] reals = [] for batch in tqdm(val_loader): clip = batch[self.clip_key] assert clip.shape[0] == 1 real_seq = batch[self.text_seq_key] real_seq_len = batch[self.text_seq_lengths_key][0] real_seq = real_seq[:, :real_seq_len] real_str = only_letters(sequence_to_text(real_seq[0])) if len(real_str) > 0: reals.append(real_str) else: continue # The WER computer doesn't like this scenario. clip_len = batch[self.clip_lengths_key][0] clip = clip[:, :, :clip_len].cuda() pred_seq = model.inference(clip) preds.append(self.detokenizer_fn(pred_seq[0])) wer = self.wer_metric.compute(predictions=preds, references=reals) model.train() return {'eval_wer': wer} if __name__ == '__main__': env = { 'opt': { 'datasets': { 'val': { 'name': 'mass_test', 'n_workers': 1, 'batch_size': 1, 'mode': 'paired_voice_audio', 'sample_rate': 16000, 'path': ['y:/bigasr_dataset/mozcv/en/test.tsv'], 'fetcher_mode': ['mozilla_cv'], 'max_wav_length': 200000, 'use_bpe_tokenizer': False, 'max_text_length': 400, 'load_conditioning': False, 'phase': 'eval', } } }} opt_eval = { 'clip_key': 'wav', 'clip_lengths_key': 'wav_lengths', 'text_seq_key': 'padded_text', 'text_seq_lengths_key': 'text_lengths', } model = Wav2VecWrapper(vocab_size=148, basis_model='facebook/wav2vec2-large-960h', freeze_transformer=True, checkpointing_enabled=False) model.w2v = Wav2Vec2ForCTC.from_pretrained('facebook/wav2vec2-large-960h') weights = torch.load('X:\\dlas\\experiments\\train_wav2vec_mass_large\\models\\0_wav2vec.pth') #model.load_state_dict(weights) model = model.cuda() eval = WerEvaluator(model, opt_eval, env, detokenizer_fn=fb_detokenize) print(eval.perform_eval())