import torch # Utility class that stores detached, named losses in a rotating buffer for smooth metric outputting. class LossAccumulator: def __init__(self, buffer_sz=50): self.buffer_sz = buffer_sz self.buffers = {} self.counters = {} def add_loss(self, name, tensor): if name not in self.buffers.keys(): self.buffers[name] = (0, torch.zeros(self.buffer_sz), False) i, buf, filled = self.buffers[name] # Can take tensors or just plain python numbers. if isinstance(tensor, torch.Tensor): buf[i] = tensor.detach().cpu() else: buf[i] = tensor filled = i+1 >= self.buffer_sz or filled self.buffers[name] = ((i+1) % self.buffer_sz, buf, filled) def increment_metric(self, name): if name not in self.counters.keys(): self.counters[name] = 1 else: self.counters[name] += 1 def as_dict(self): result = {} for k, v in self.buffers.items(): i, buf, filled = v if filled: result["loss_" + k] = torch.mean(buf) else: result["loss_" + k] = torch.mean(buf[:i]) for k, v in self.counters.items(): result[k] = v return result